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Abstract:

Laser-tissue interaction is of great interest due to its significant application in biomedical 
optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction 
which has to be considered in biomedical studies are the thermal properties of the tissue 
and the thermal changes caused by the interaction of light and tissue. In this review paper 
the effects of light on the tissue at different temperatures are discussed. Then, due to the 
noticeable importance of studying the heat transfer quantitatively, the equations governing 
this phenomenon are presented. Finally a method of medical diagnosis called thermography 
and some of its applications are explained.
Keyword: Lasers; Tissues; Absorptions

Introduction
As it was emphasized in the previous review article1, 

lasers are widely used in biology and medicine and 
the majority of the hospitals utilize modern laser 
systems for diagnostic and therapeutic applications. 
The medical laser applications are defined by the 
type of interaction between laser light and tissues. 
Knowledge of laser-tissue interaction can help doctors 
or surgeons to select the optimal laser systems and to 
modify the type of their therapy1-3. Therefore, we seek 
to review the mechanisms of laser- tissue interaction. In 
reference number 1, the optical properties of biological 
tissue such as absorption, scattering, penetration and 
fluorescence have been reviewed1. In this paper, we 
intend to study the thermal properties of the biological 
tissues. During all medical applications based on heating 
such as hair removal, cancer therapy or laser-induced 
interstitial thermotherapy (LITT), it is desirable to have 
a complete knowledge of temperature distribution in the 
tissue. Study of this temperature distribution requires 
knowledge about the thermal properties of biological 

tissues. The transportation of thermal energy in 
biological tissues is a complicated procedure including 
different phenomenological mechanisms such as thermal 
conduction, convection, radiation, metabolic activities 
and phase change2. If a biological tissue is illuminated 
by a laser light such as Neodymium-Doped Yttrium 
Aluminium Garnet (Nd:YAG) or Carbon Dioxide (CO2) 
laser, one can see multiple effects like coagulation, 
vaporization, carbonization or melting. These effects 
depend on the peak power and wavelength of the laser 
as well as the thermal properties of biological tissues. 
In Figures 1-5, these thermal effects are shown. 

In 1967 Dr. Kelly published the first paper about 
laser coagulation. He applied laser for pre-retinal 
haemorrhage on rabbits and he emphasized that for 
higher energy setting, the nerve-fibre of retina maybe 
destroyed3. Laser can increase the temperature of cells 
and it results in denaturation of proteins and collagen 
that leads to coagulation of tissue and it can necrotize 
cells. The red blood cells tend to absorb green light, 
hence green light laser is a good choice for diabetic 
eyes (Figure 1).
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Heat effects

Increasing the body temperature leads to several 
effects such as hyperthermia, coagulation and 

other irreversible tissue effects. By increasing the 
temperature, the initial effect is hyperthermia. The 
typical range of 40-50 degrees Celsius is called 
hyperthermia domain within which some molecular 
bonds are destroyed and the membrane is altered. The 
reduction in enzyme activity is observed. However, 
the effects in this temperature range are reversible. 

For temperatures around 60oC, denaturation of 
proteins and collagen occurs which leads to the 
coagulation of tissue and it can necrotize cells. Several 
optical treatments such as LITT and hair removal aim 
at temperatures above 60oC. At higher temperature the 
equilibrium of chemical concentration is destroyed 
as the permeability of membrane of cells increases. 

The vaporization of water occurs at 100oC. 
The vaporization is sometimes referred to as the 
thermomechanic procedure, because within the 
vaporization phase, the temperature of tissue does not 
alter and gas bubbles are formed. The propagation 
of these bubbles accompanied with the alteration of 
their volume causes thermal decomposition of tissue 

Figure 2. (a) Uterine tissue of a wistar rat coagulated with CW 
Nd:YAG laser(power: 10 W, bar: 80 micron) and (b) Human 
cornea coagulated with 120 pulses from an Erbium-Doped Yttrium 
Aluminum Garnet (Er:YAG) laser(pulse duration: 90 microsecond, 
pulse energy: 5 mJ, 1Hz, bar: 100 micron) 2.

Figure 3. Human tooth vaporized with 20 pulses from an Er:YAG 
laser (pulse duration: 90 microsecond, pulse energy: 100 mJ, 1 Hz)2

Figure 4. Human tooth carbonized with Continues-wave (CW) 
CO2 laser (power 1 W, bar: 1 mm)2.

Figure 1. Coagulation of a diabetic retina by a potassium-titanyl-
phosphate Neodymium-Doped Yttrium Aluminium Garnet (KDP- 
Nd:YAG) laser beam.
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fragments. If all water molecules are vaporized, 
carbon atoms are released and the adjacent tissues are 
blackened and smoke rises from the skin. This stage is 
called carbonization (Figure 4). Finally beyond 300oC 
melting might occur (Figure 5). Table 1 depicts the 
summarized heat effects for different temperatures.

It is worth mentioning that 60oC is a critical 
temperature since most biological effects which occur 
at temperatures higher than that are irreversible.

Heat transport

The energy of laser can be absorbed by targets 
such as water, melanin and blood. This absorbed 
energy leads to a raise in the temperature of tissue. 
This energy can be assumed as heat energy source. 
The heat source, ( )tzrS ,, , inside the exposed tissue is 
a function of absorption coefficient a and the laser 
intensity ( )tzrI ,, . In this regards heat conduction and 
heat convection are important as they transfer the heat 
energy inside tissue. The physics of heat transfer is 
complicated; therefore we only explain some important 
results. One of the important parameters is relaxation 

time. Relaxation time is a time during which heat 
energy can diffuse inside tissue. The relaxation time is 
a function of extinction coefficient. Before we define 
relaxation time, the thermal penetration depth, which 
is another critical parameter that must be considered, 
shall be defined as:

( ) ttztherm κ4= 	 (1)

In this equation κ is called temperature conductivity 
and its value is approximately the same for water  
 sm27104.1 −×  according to reference number 2. 
Table 2 shows the thermal penetration depth, which 
is defined as a distance in which the temperature 
decreases to 63% of its peak value. This table 
expresses the thermal-temporal response of water; one 
shall keep in mind that heat diffuses in water up to 
approximately 0.7 micron within 1.0 microsecond. As 
it was expressed in reference number 1, the penetration 
depth, defined as aL 1= , is a distance in which the 
intensity of laser has decreased to 63% of its peak 
value1. Experiments show that the relaxation time (

relaxτ ) of water at the absorption peak which is for a 
wavelength near 3 microns is 1.0 microsecond. If the 
laser pulse duration τ is smaller than the relaxation 
time ( relaxττ < ), the thermal energy cannot diffuse to 
the penetration depth; therefore thermal effects can 
be negligible. Heat can be diffused up to the optical 
penetration depth when relaxττ > , hence thermal effects 
or damages are possible. The criterion srelax µτ  1=  is 
useful for wavelength of 3.0 micron, however for 
visible laser light relaxτ  is larger than 270 hours! This 
is not extraordinary, because water is transparent for 
visible laser light. Relaxation time for near infra red 
(NIR) laser is smaller than 1.0 millisecond. One can 
calculate the relaxation time of different tissue by the 
following relation:

 

arelax 7106.5
1

−×
=τ 	  (2)

Because most medical applications of heat are 
transient, the tissue thermal diffusivity is important. In 
the following sections, we will introduce the important 
thermal parameters of biological tissues. As mentioned 

Temperature Biological effects
37°C Normal
45-50°C Hyperthermia, Reduction of enzyme activity, Cell 

immobility
60-80°C Denaturation of proteins and collagen; 

Coagulation
100°C Vaporization, Thermal decomposition(ablation)
>100°C Carbonization
>300° Melting

Table 1. Thermal effects of laser light for different temperatures2. 

Time t Thermal temperature depth Ztherm (t)
1 µs	 0.7 µm
10 µs 2.2 µm
100 µs 7.0 µm
1 ms 22.0 µm
10 ms 70.0 µm

Table 2. Thermal penetration depths of water 2.

Figure 5. Human tooth melted with 100 pulses from a Ho: YAG 
laser (pulse duration: 3.8 microsecond, pulse energy: 18 mJ, 1 Hz)2. 
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before, heat conduction and heat convection are 
important means of heat transfer. One typical example 
of heat conduction in tissue is the heat transfer by 
neighbourhood cells. The blood perfusion is an agent 
for heat convection; table 3 shows the perfusion rate 
of some human organs. It is worth stating that this 
perfusion rate is negligible in the first approximation, 
but for long exposure or LITT it has a significant role. 

Heat conduction can be stated as following:

TkJ ∇−= 	  (3)

In this equation k is called heat conductivity and 
is expressed in units of W/mK . J is called heat flow. 
The value of heat conductivity at 37oC is 0.63 
W/mK. According to the equation of continuity the 

time evaluation of heat content per unit volume )(
t
q
∂
∂  

is determined by the divergence of the heat flow J:

t
qJ
∂
∂

−=∇ 	  (4)

After some mathematics it is derived that:

( ) ( )tzrS
t
T

k
ctzrT ,,,,2 +
∂
∂

−=∇
ρ 	  (5)

Equation 5 is heat transfer equation. The transfer 
of heat in biological tissues can be modelled by this 
differential equation. The source term ( )tzrS ,,  contains 
the term of perfusion, conduction and laser source. 
It has been shown in the literature that the duration 
pulse of 1.0 microsecond is a crucial parameter and 
the thermal effects and hence heat transfer equation 
must be studied by this parameter. 

For temperatures above 60oC, the necrosis can happen. 
To obtain the number if the remaining active cells at a 
certain temperature level (C(t)), we can use Arrhenius 

equation:
 ( )

( ) Π≡′







′

−=− ∫
t

td
tRT

eA
C

tC

00

expln 	  (5)

C0 is the initial concentration of cells, A is the Arrhenius 
constant, e and Π are specific tissue parameters and 
R is the universal gas constant. The local damage of 
tissue can be determined by this relation:

( )

( )Π−=

Π−=
−

Π=−

exp1)(

exp)(

)(ln

0

0

0

0

C
DamageC

C
DamageCC

C
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	  (6)

Thermography

Nowadays, the researchers look for new non-invasive 
biomedical imaging methods. Among biomedical 
imaging, thermography is a non-invasive, non-contact 
skin surface temperature screening technique which 
is cost-effective, fast and does not cause any pain on 
the patient8. It is a relatively simple imaging approach 
that detects the variation of temperature on the human 
surface. 

Ammer in 1995 showed that the thermography 
can be used to image muscle; Low activity muscles 
caused by neurological deficit or by pain inhibition 
should result in an asymmetric thermal pattern with 
low temperature over non-functioning muscles. 
Thermograms of 50 patients with pain in one ankle 
joint were re-evaluated for thermal asymmetry 
over the lower leg. Thirty-eight patients showed a 
pathological side-to-side difference of temperature 
over the ankle joint in a range of -1.8 to 3.4 degrees. 
Thermal asymmetry of the anterior lower leg, defined 
as side-to-side difference greater than 0.5 degrees 
was observed in 54% of patients. Nearly all of those 
patients showed a decrease of temperature (mean of 
temperature on the affected minus temperature of the 
healthy side: -0.32 ± 0.78) on the symptomatic side. 
A similar decrease of temperature over the muscles 
of the anterior lower leg was found in a small group 
of 10 patients with palsy of the peroneal nerve. 
Muscular inactivity should be considered as a reason 
for regions of low temperature in patients with painful 
ankle joints4.

Thermography is utilized in various medical 
fields reported in reference numbers 5-40 such as 
the detection of breast cancer, which is the refocus 
of many biomedical researchers in recent years5-40 
(Figure 6). The earliest breast thermogram was 
reported by Lawson41-44. He observed that the venous 
blood draining the cancer site is often warmer than 
its arterial supply. However, these measurements have 
never been confirmed by other groups and the findings 
might thus have been questionable. Thermograms 

Tissue Perfusion rate (ml /min g)
Fat 0.012-0.015
Muscle 0.02-0.07
Skin 0.15-0.2
Brain 0.46-1.0
Thyroid gland ~ 4.0

Table 3. Blood perfusion rates of some human organs2.
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alone will not be adequate for the medical practitioner 
to make a diagnosis. Analytical tools such as bio-
statistical methods and artificial neural network are 
recommended to be included to study the thermogram 
objectively34,45-65. Notice that these approaches may 
improve the interpretation of thermal images which 
may lead to a higher diagnostic accuracy of infrared 
thermography, but these methods of analysis are not 
more objective than other highly accurate and precise 
measurement methods. With the rising use of thermal 
imaging, there is a need to have regulations and 
standards to provide accurate and consistent results. 
The standards are mainly based on the physics of 
radiation and thermoregulation of the body4.

Figure 6 illustrates a typical thermal imaging with an 
asymptomatic volunteer (aged 35) thermogram. Based 
on mammographic examinations in 1000 Singapore 
women on the eve of the breast cancer awareness month 
-Oct. 199812,66, the average size of a cancerous lump58 

was 1.415 cm in spheroid shape when detected in the 
clinic for the first time4. Temperature data are extracted 
from the breast thermograms. The thermograms 
consist of many colored pixels, each representing a 
temperature. From the thermograms, it is possible 
for an experienced medical practitioner to diagnose 
abnormalities such as a cyst. After every pixel’s 
temperature is compiled, bio-statistical technique can 
be used to treat them, such as determining the mean, 
median and modal temperature of the breast region56.

Aweda showed that the Thermographic technique 
and energy exchange processes in 107 cancer patients 
were studied in order to determine relevance in cancer 
management5. The mean oxygen consumption rate 
in control subjects (36.13 ml/s) was higher than the 
mean oxygen consumption rate in breast (31.89 ml/s), 
head and neck (30.64 ml/s), cervical (28.05 ml/s) and 
other forms of cancers (30.78 ml/s). Mean metabolic 
heat production rate in control subjects (150.71 J/h) 
was higher than the mean metabolic heat production 
in breast (133.04Jh/h), head and neck (127.80 J/h), 
cervical (117.00 J/h) and other cancers (128.37 J/h). 
Convective rate of heat exchange was -14462.91 J/h 
for non-cancer persons while it was -15841.98 J/h for 
breast, -15509.34 J/h for head and neck, -13873.86 
J/h for cervical and -3950.10 J/h for other forms of 
cancers. Evaporative heat loss was -10949.40 J/h for 
non-cancer patients, -11326.39 J/h for breast, -11229.40 Figure 6. A thermal imaging setup for breast imaging (left picture) 

and Typical thermogram of an asymptomatic volunteer age 35 
(right picture)4

Figure 7. Typical thermographs of cancer patients: (a) is Keloid 
on the left arm, (b) is Cancer of the left breast post-mastectomy, 
(c) is the Cancer of the cervix and (d) is the Cancer of the thyroid5. 
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J/h for head and neck, -10788.62 J/h for cervical and 
-10946.63 J/h for other forms of cancers. Respirative 
rate of heat loss was - 6.89 J/h for non-cancer patients, 
- 6.08 J/h for breast, -5.85 J/h head and neck, -5.35 J/h 
for cervical patients and -5.87 J/h for other forms of 

cancers. Mean skin temperature for non-cancer patients 
was 35.44oC, for patients with breast cancer 36.43oC, 
head and neck cancer 36.19oC, cervical 35.01oC and 
for other forms of cancers it was 35.43oC. Figure 7 
shows the aforementioned cancerous parts. The results 
showed that cancer patients consume less oxygen and 
gain heat at a higher rate than the non-cancer patients. 
Skin temperature combined with related physiological 
energy parameters could be useful in assessing and 
monitoring cancer patients (Figure 8 and table 4)5.
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