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Abstract
Periodontitis is one of the most common inflammatory diseases of the periodontium, which 
results in the inflammatory destruction of supporting structures around teeth and is closely 
associated with the development of systemic disease. Due to a wide variety of antibiotic 
resistance periodontopathic bacteria, photodynamic therapy (PDT) is a non-invasive adjunctive 
therapeutic modality that is capable of destroying the whole range of microbes. Metformin 
(Metf) is an antidiabetic drug, and recent studies suggest that cancer patients who receive Metf 
and are exposed to radiotherapy and chemotherapy show better outcomes. Our surveys in this 
review introduce Metf as a potent stimulus in increasing the efficacy of PDT in the induction of 
destruction in microbial cells.
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Introduction
In the last decade, the number of antibacterial drugs 
approved with a new mechanism of action has declined.1 
The results of the misuse of these drugs are their adverse 
effects and particularly the expansion of bacterial 
resistance.2 Resistance is often accompanied by the 
existence of antibiotic resistance genes which can be easily 
found in the oral microbiome.3 The importance of the 
commensal microbiota lies in its function as a reservoir 
of antibiotic-resistant microorganisms that some of them 
are also able to create local and systemic diseases. It has 
been shown that antibiotic resistance associated with 
periodontal microbiota has increased.4

Tooth loss and alveolar bone resorption in individuals 
with periodontal disease have occurred.5,6 In many 
countries, the incidence of periodontal disease has 
remained high, so that adults and young people are 
affected by severe periodontitis.7 Famous pathogens in 
producing periodontal diseases include Porphyromonas 
gingivalis and Fusobacterium nucleatum.8

Several studies show that some diseases are more 
strongly associated with the presence of periodontitis 
such as diabetes mellitus,9 rheumatoid arthritis,10 
bacterial pneumonia,11 cardiovascular diseases,12 adverse 
pregnancy outcomes13 (premature birth, birth low birth 

weight, etc), and an increased risk of oral cancer.14 Oral 
squamous cell carcinoma (OSCC) is common cancer 
worldwide but occurs more frequently in individuals with 
oral bacteria. Compared with normal mucosa, OSCC 
surfaces have higher levels of periodontal pathogenic 
bacteria.15 In patients with untreated periodontal disease, 
they simplify the entry of bacteria and bacterial products 
into the bloodstream.16 Oral diseases such as dental caries 
and periodontal disease are directly associated with 
biofilm-related infections of the oral cavity.17 A biofilm is 
very resistant to antibiotics and human immunity.18 Oral 
biofilm antibiotic resistance can be transferred into or out 
of the oral cavity.19 the formation of the microbial biofilm 
is a common cause of morbidity and mortality in patients 
and leads to an increase in healthcare cost.20

Photodynamic therapy (PDT) has the potential to 
become established as an antimicrobial approach, which 
appears best for localized infections under the conditions 
where antibiotics are not effective in the treatment of 
infection.21,22 Bacteria within the biofilms matrix are 
2–1000 fold more resistant to an antimicrobial agent and 
PDT might be an optional therapeutic method to disrupt 
biofilms that cause oral disease via pathogenic bacteria.23,24 

Metformin (Metf) increases apoptotic response25 and 
provides a synergistic advantage with chemotherapy 
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and radiotherapy against certain cancers.26,27 This 
review focuses on the evaluation of the effect of the 
combined treatment of Metf and PDT on the treatment 
of periodontitis. In this review, data on PDT, Metf and 
the effect of their combination (PDT+Metf) against 
microorganisms, were collected from the published 
articles in PubMed, Google Scholar, and Scopus databases 
and prepared a review of the mentioned subjects.

Photodynamic Therapy: Definition 
PDT contains the components of the visible light, 
photosensitizer (PS) and oxygen28 that form reactive 
oxygen species (ROS), causing the destruction of 
microorganisms.29

Mechanism of Action of Photodynamic Therapy
In the process of PDT, the components of the PS, when 
exposed to a particular light wavelength, gain a higher 
level of energy through the transition of electrons. In this 
exciting status, PS can react with oxygen and produce 
hydrogen peroxide (H2O2), superoxide anion radical 
(O·̄2), and hydroxyl radicals (•OH) (process type I) or 
react with oxygen to initiate the formation of reactive 
singlet oxygen (1O2) (process type II).30 The products 
produced in these reactions can cause considerable 
damage to the microorganisms or can change their 
metabolic activities irreversibly, thus resulting in death.31 
When compared to other therapeutic methods, PDT has 
multiple benefits. PDT is a non-invasive and successful 
method in the treatment of the periodontal infection 
which results in killing a large variety of pathogens.32,33 
The photo-activation allows better action for localized 
forms  that decrease the complications of PDT, and can 
also be used to couple with other medical procedures. 
PDT is known as a cost-effective therapeutic approach 
due to the combination of low-cost PS and light sources. 
In addition, PDT has different cellular targets; thus, drug 
resistance does not happen.34

Metf: Definition
Metf (a biguanide drug) has commonly been used for 
decades for the treatment of diabetes type II. About 150 
million people worldwide use Metf. It is derived from the 
plant Galega officinalis35 and has recently been suggested 
as an adjuvant treatment for cancer.36,37 Kim et al reported 
that radiation-sensitizing effect of Metf on hepatocellular 
carcinoma happened via increased apoptosis, cell cycle 
arrest, and enhanced DNA destruction.38

Metformin: Mechanism of Action
In eukaryotic cells, the primary target of Metf is 
complex-I of the electron transport chain leading to an 
accumulation of ROS and oxidative damage to lipids, 
protein, and DNA that could potentiate the effects of 
ionizing radiation.39,40 Complex-I (proton-pumping 
NADH) is the first energy-transducing complex of many 

respiratory chains in eukaryotic cells and prepares the 
proton motive force required for energy consuming 
routes. In the respiratory chains of many bacteria, there is 
homologs of complex-I.41-43

In eukaryotic cells, the inhibition of complex-I by Metf 
results in decreased oxygen consumption and adenosine 
triphosphate (ATP) generation. Following the reduction 
in ATP production in eukaryotic cells, the cellular levels 
of adenosine monophosphate (AMP) increase and 
the energy sensor AMP-activated kinase (AMPK)40 is 
activated. A serine/threonine protein kinase, known as 
AMPK, is comprised of a catalytic subunit (α) and two 
regulatory subunits (β and γ).44

When the amount of ATP concentrations is low, AMPK 
is activated and AMP concentrations enhance in response 
to food deprivation, hypoxia and Metf administration.45 
AMPK activation improves the potency of neutrophils 
or macrophages to kill bacteria. Phagocytosis of bacteria 
as part of an innate immune response in the presence 
of macrophages and neutrophils plays a crucial role 
in the control of inflammation.46 In eukaryotic cells, 
various activators of AMPK have been shown to raise 
the phosphorylation of CLIP170 (CAP-Gly domain-
containing linker protein 1), which are required for 
microtubule dynamics.47,48

Inhibitions of AMPK and expression of a non-
phosphorylate CLIP-170 mutant result in the improved 
accumulation of CLIP-170 at microtubule tips and slower 
tubulin polymerization. Additionally, AMPK inhibition 
results in microtubule instability.49 Pro-inflammatory 
responses and acute-phase proteins released during 
PDT can affect the immune system, which promote the 
penetration of a great number of inflammatory cells into 
the treatment site.

PDT immunological effects, when used for the treatment 
of local infections, make treatment more effective.50,51 
The results of studies have shown that 5-aminolevulinic 
acid (ALA)-mediated PDT effectively induces oxidative 
stress. ALA itself is not a PS and operates as the biological 
precursor in the heme biosynthetic pathway that can be 
biosynthesized in nearly all aerobic cells in mammals. 
Exogenous ALA administration leads to the accumulation 
of protoporphyrin IX in the mitochondria, which causes 
destruction to the mitochondria, reduces cellular ATP and 
causes impairment of mitochondrial function, following 
cell death after light irradiation.52-54 Furthermore, ALA 
has been shown to have considerable photo bactericidal 
activity and ALA could induce photodynamic inactivation 
effectively against various types of bacteria.52

Nitric Oxide 
Nitrate is a component of human saliva that is converted 
to nitrite and nitric oxide (NO) rapidly by oral bacteria.55 
NO is a ubiquitous, free radical gas, which plays a 
major role in various physiological and pathological 
processes56 and may act as a potential biological marker 
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for the detection of generalized chronic periodontitis.57 

NO is produced via nitric oxide synthase (NOS) in the 
oral mucosa. The inducible type of NOS (iNOS) is one 
of the NOS isoforms, which is enhanced in the presence 
of periodontal disease.58,59 The intervention of NO in 
bone loss processes60 and the expression of iNOS in oral 
dysplasia and oral lichen planus have been reported. Also, 
DNA destruction caused by NO increases and may lead to 
the advance of oral cancer.58,61 NO signals not only greater 
resistance to photokilling, but also a changed phenotype 
in surviving tumor cells which are characterized by more 
aggressive proliferation, migration, and invasion.62 In 
tumor cells, oxidative stress and leukocyte recruitment 
are NO-sensitive processes, which are induced by PDT63 
and iNOS inhibitors in these cells can alleviate resistance 
to photokilling.64

Metf has inhibitory effects on the complex-I and 
therefore creates superoxide anion that reacts with NO to 
form reactive nitrogen species (RNS) such as peroxynitrite 
(ONOO_), which is a very potent inducer of DNA 
damage.65,66 Activation of AMPK is induced by ONOO67 
and would inhibit iNOS by reducing the transcription of 
iNOS.68

PDT induces the increase of superoxide dismutase 
activity. Excessive levels of superoxide during oxidative 
stress cause a reduction in NO by forming peroxynitrite.69,70

Metf, coupled with PDT, has a prooxidant role in 
the tumor cells and induces apoptosis in tumor tissue, 
compared to the administration of each one alone. NO 
levels reduce, thereby elevating nitrotyrosine formation. 
Nitrotyrosine is a stable indicator for RNS generation 
and confirms that they have a useful role in activating 
AMPK.25 In tumor models identified by moderately high 
production of NO, lowering the NO levels after PDT by 
NOS inhibitors (administered intravenously) appears to 
increase the rate of damage to treated tumors, as proposed 
by the improved tumor cure rates.71

Apoptosis
Apoptosis is a normal physiologic route, playing the 
main role in periodontitis.72,73 Disorders of apoptosis may 
contribute to a wide range of pathologies including oral 
diseases.74 Bacterial products produce pro-inflammatory 
factors. The inflammatory response has an important role 
in the expansion and progression of periodontitis.75 

IL-4 is considered an anti-inflammatory cytokine that 
can modulate macrophage function and induce apoptosis 
in macrophages and monocytes.76 In patients with 
generalized aggressive periodontitis, the concentration 
of IL-4 is lower compared with healthy persons.77 Lack of 
IL-4 inhibits apoptotic cell death and may be responsible 
for the accumulation of macrophages in the inflammatory 
lesion and hence may contribute to the chronicity of the 
disease.78,79 Caspases, Tumor protein p53 (p53), and B-cell 
lymphoma 2 (Bcl-2) family members are chief factors in 
the apoptosis process (Figure 1).80-82

P53 Tumor Suppressor 
The p53 tumor suppressor functions as a transcription 
factor which becomes activated by numerous stress 
stimuli.83 Some bacterial pathogens also actively prevent 
p53 protein and induce its degradation, resulting in 
variation of cellular stress responses.84 The infection of the 
gingival epithelial cell with P. gingivalis results in a decrease 
in p53 levels. By phosphorylation of kinases like Chk2, 
Aurora A, CK1delta and CK1epsilon, P53 is activated. 
All of these kinases are downregulated by P. gingivalis.85 
A role for lipopolysaccharide (LPS) in the dysregulation 
of p53 has been confirmed.86 Dysregulation of immune 
pathways involved in periodontal disease causes chronic 
inflammation and tissue destruction.87 It has recently 
been reported that there is a relationship between P53 and 
increased immune response.88 Apoptosis can be induced 
via the expression of p53.89 PDT improves TP53 gene 
amplification. The major role of p53 in the PDT process 

Figure 1. Interaction Between Metf, PDT and Microorganisms.
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has been shown for numerous clinically approved PSs.90,91 

Metf induces radiosensitization in cancer cells lacking 
functional p53.92 Metf activates AMPK, which induces 
phosphorylation of p53 on serine 15.93,94 During cellular 
stress, phosphorylation at Ser-15 may be a serious event 
in the up-regulation and expression of p53.95

Therefore, providing maximal therapeutic advantages 
in combination with PDT, Metf can increase the activity 
of P53 and thus microbial cells are more sensitive to PDT 
and increased apoptosis.

BCL2 Family
BCL2, as an anti-apoptotic protein, can inhibit cell 
death induced by a range of stimuli and prevents the 
release of cytochrome c (Cyt c) from mitochondria.96 The 
higher incidence of BCL2 expression occurs in patients 
with chronic periodontitis and generalized aggressive 
periodontitis, as compared to the healthy gingival 
tissues.72,97 A significant tactic for P. gingivalis to survive 
in periodontal tissues is the ability to repress apoptosis.98 
P. gingivalis can block apoptosis in gingival epithelial 
cells by the up-regulation of the BCL2.99 PDT degrades 
the BCL2 molecule, leading to apoptosis.100 BCL2 may 
undergo direct oxidative damage from PDT-generated 
ROS.101 BCL2 overexpression would protect cells from 
PDT-induced apoptosis and lead to impaired apoptosis 
after PDT.102 BCL2 forms a main factor of photokilling 
and shows that when PDT is joined with the suppressive 
factor of BCL2 function, synergistic effects can occur.103 In 
vivo, Metf decreases BCL2 expression, thereby inducing 
apoptosis.104 Therefore, the use of Metf in combination 
with PDT can increase apoptosis and the efficacy of PDT 
in the treatment of bacterial infections. 

Caspase Family
Caspases (a cluster of intracellular cysteine proteases) are 
capable of cleaving substrates after aspartic acid residues 
and create certain morphological shifts related to 
apoptosis.105 Caspase-3 is regarded as a more important 
player in apoptosis and cell death.106 Another important 
point in the induction of apoptosis is the stimulation of 
the apoptotic initiator caspase 9.107 During P. gingivalis 
infection, activation of both caspase-9 and caspase-3 
are blocked strangely.15 Blocking the caspases results in 
a partial block in the loss of mitochondrial membrane 
potential (ΔΨm) and as a result, the diffusion of Cyt c is 
stopped.108,109 The inhibition of caspase activation also 
blocks ROS production and promotes infection.110,111 Due 
to the production of ROS within mitochondria, loss of 
ΔΨm PDT causes mitochondrial damage.112

The prevention of complex-I and the generation of 
ROS induced by Metf should decrease the mitochondrial 
membrane potential113,114 and apoptosis by releasing Cyt c 
from the mitochondrial inner membrane to the cytosol.115 
Cyt c by binding to proteins such as apoptotic protease 
activating factor 1 (Apaf 1) and procaspase 9 leads to the 

consecutive activation of caspase 9 and caspase 3, thus 
obligating the cell to apoptosis.116 It can be concluded PDT 
combined with Metf increases ROS production, result in 
structural damage in microbial cells . Therefore, use of 
PDT in combination of Metf may increase antimicrobial 
efficacy of PDT against local infections. 

Matrix Metalloproteinases Family
Matrix metalloproteinases (MMPs) are members of a 
multigene family of zinc-containing enzymes that are 
capable of degrading all extracellular matrix (ECM) 
components.117,118

Deep periodontal pockets form due to the damage 
to ECM and alveolar bone loss. There are diverse 
pathways for the metabolic destruction of ECM. One 
pathway seems to be due to the activation of MMPs119 
that may be involved in the degradation of collagen.120 
Type I collagen is the most commonly lost part of the 
periodontium.121 MMP-2 has helicase activity that can 
cleave type I collagen.122 MMP-2 level is increased during 
inflammatory conditions such as periodontal disease.123 
As we know, P. gingivalis is a key organism associated with 
the destruction of periodontal tissues.124 P. gingivalis LPS 
can stimulate the production of prostaglandin (PG) E2 
and promote the release of the MMP, which is associated 
with the development of gum disease.125 

The enzyme cyclooxygenase-2 (COX-2) is responsible 
for the PGE2 production at sites of inflammation.126 
COX-2 is induced by bacterial LPS; commensal bacteria 
might regulate constitutive COX-2 expression.127 Patients 
with periodontal disease have more COX-2 than healthy 
people.128

PDT induces MMPs, COX-2 expression, and release 
of PGE2, and the adjunctive use of MMP and COX-
2 inhibitor enhances PDT responsiveness.129-131 Metf 
has been reported to inhibit MMP-2 and COX-2 
expression.132 The inhibition of MMP2 ameliorates 
mitochondrial damage,133 and the blockage of COX-2 
expression increases the transcriptional activity of p53 
and simplifies the decrease of ΔΨm induced by PDT.134 

Metf plus PDT can diminish MMP-2 activity and COX-
2 expression in tumor tissues,  compared to the patient 
who is treated with PDT. As a result of these effects, the 
combined use of inhibitors of COX-2 and MMP such as 
Metf as modulatory agents with aPDT with a reduction 
in ΔΨm enhances the release of Cyt c and also increases 
the activity of P53. Moreover, it can induce apoptosis and 
prevent the tissue damage associated with periodontitis. 

NF-κB Signaling
Nuclear factor kappa B (NF-κB) proteins are activated 
by microbial pathogens.135 NF-κB has a fundamental 
role in the suppression of apoptosis induced by 
bacterial components like lipopolysaccharide.136 
Lipopolysaccharide, hypoxia or decreased oxygen 
availability can induce NF-κB.137,138 P. gingivalis and 
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F. nucleatum activate the NF-κB pathway.139 Toll-Like 
Receptors (TLRs) are strong activators of the NF-κB 
intracellular pathway.140 Activation of TLRs on the cells 
of the periodontium leads to the overstated release of pro-
inflammatory mediators, which may cause host tissue 
destruction.141 TLR4 expression is blocked by the NF-κB 
inhibitor.140 Neutralization of the NF-κB pathway might 
provide a useful therapeutic strategy in periodontitis.142 
PDT reduces inflammatory markers NF-kB and 
inflammatory cytokines.143 Results show that TLR-4 level 
reduces significantly following PDT, which could have 
been due to damage/ inactivation of the LPS.144

Metf inhibits activation of NF-kB through the 
blockade of the phosphoinositide 3-kinase (PI3K)/Akt 
pathway.145,146 The PI3K-Akt signaling pathway is of 
considerable importance for survival and apoptosis.147 
PI3K/Akt pathways are activated by TLR4 signaling via 
LPS.148 PI3K/Akt activity is required for NF-kB activity.149

Conclusions
The use of non-specific drug Metf in combination with 
PDT can be a solution for enhancing the effectiveness 
of PDT, leading to its potential role in the reduction of 
periodontal infections. This combination therapy induces 
oxidative stress, increases the rate of apoptosis, reduces 
levels of NO, and decreases expressions of MMP-2 and 
COX-2. Furthermore, it causes the inactivation of the 
NF-κB signaling pathway to occur. The experimental 
data for determining the dose of Metf and getting a better 
response during clinical trials are required. There has 
been little research in this area and this study could open 
a new approach in the treatment of bacterial infections.
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