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Introduction
Nowadays, applications of ceramic based zirconia in 
restorative dentistry due to its esthetic and mechanical 
properties have been widespread.1,2 Martensitic 
transformation of yttria-stabilized tetragonal zirconia 
polycrystal (Y-TZP) ceramics causes high flexural 
strength and toughness compared to other dental ceramic 
materials.3-6 Despite these advantages, it is hard to obtain 
a proper bonding to other substrates because of its 
hydrophobic surface.7, 8

Several studies have shown that unmodified surfaces 
display low bond strength and eventually leads to adhesive 
failure,9-11 so there is a need to intensify surface properties 
of these ceramics to reach an effective bonding.12 These 
surface modifications are based on roughening the surface 
and increasing its wettability.13-16 Conventional adhesion 

techniques used for silica-based ceramic (such as etching 
by hydrofluoric acid) cannot be used for zirconia ceramics, 
because it fails to achieve adequate surface roughness and 
will lead to poor bonding strength.10, 17-19 
The airborne Al2O3 particle abrasion of zirconia ceramics 
surface has been found an effective method for achieving 
durable ceramic-resin bonding. This method increases 
the surface roughness and wettability, which leads to 
mechanical and chemical bonding between resin and 
ceramic surface.20-24 However, it has been reported that 
particle abrasion by alumina can create mechanical 
damage on the surface of ceramic, which could affect 
bonding performance in long term.25-27 To deal with this 
problem, it is recommended to use softer and rounder 
abrasive particles26 or omitting these particles.28

To avoid these problems, researchers tried to find 
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alternative surface treatment for improving bonding 
performance of zirconia ceramics: selective infiltration 
etching,29 chlorosilane combined with water vapor,7 the 
fluorination vapor techniques,24 ion bombardment,15,30 
and plasma-coating techniques.15,31,32

Recently, application of plasma in dentistry  has thrived 
specially as an effective tool for surface enhancement.32 It 
has been suggested that plasma modification of surfaces 
can improve zirconia-resin bonding performance by 
changing functional groups on the surface creating 
reactive sites on surfaces.31,33 Valverde et al reported that 
application of non-thermal plasma for zirconia ceramic 
surface treatment significantly increases the micro tensile 
bond strength.31

The objectives of the present study were to (1) evaluate 
surface properties of Cercon® zirconia ceramics, (2) 
specify the impact of non-thermal plasma on zirconium 
bonding strength to resin composite cements.

Methods
Specimen Preparation 
Nine blocks of Cercon® base colored 47 blocks 
(DeguDent, Hanau, Germany) were cut by low speed 
diamond saw (Secotom-50, Struers, Ballerup, Denmark) 
in 180 discs (thickness was 0.85-0.9 mm) and were 
polished in 3 sandblasting phases by 800 grit, 1500 grit, 
3000 grit, respectively. According to the factory’s data, 
these ceramics have 5% yttrium oxide, below 2% hafnium 
oxide, and below 1% aluminium oxide and silicon oxide. 
The discs surfaces were washed for 5 minutes with 
distilled water in ultrasonic machine and sintered after 
one-day drying; the thickness was 0.75 mm in this phase. 
Sample coarseness increased after sintering. The surfaces 
were polished with 1000 grit emery to make a flat sample 
surface. Prior to surface modification treatments, samples 
were washed after polishing with acetone, iso-propanol, 
and distilled water in 3 phases for 5 minutes in ultrasonic 
set. 
The specimens were placed in reactor in order to surface 
modification via plasma. Plasma treatment was performed 
based on their experimental groups, with a low density 
cold active inert argon, oxygen, and air gas plasma beam 
for 20 seconds over a distance of 10 millimeters. There 
were 6 study groups based on treatments: 
1) ceramics treated by oxygen plasma
2) ceramics treated by argon plasma
3) ceramics treated by plasma of air
4) ceramics treated by 20% oxygen and 80% argon 
combination
5) ceramics treated by 10% oxygen and 90% argon 
combination
6) untreated ceramics (control).
Tektronix DPO 3012 oscilloscope (Beaverton, Oregon, 
USA), Tektronix TCP 202 flow probe (Beaverton, 
Oregon, USA) and Tektronix p6015 (Beaverton, Oregon, 
USA) high voltage probes were used to measure the input 
voltage for producing plasma.

Contact angle measurement
In order to measure contact angle in specimens 
(n = 60), the sessile drop technique was performed by a 
micrometer set (EasyDrop, Kruss, Germany) using 2 
different liquids with different polarities (distilled water 
and diiodomethane). Before this test, the 60 specimens 
were randomly allocated into 6 groups, with 5 of them 
treated by plasma (n = 50) and 1 group untreated (n = 10). 
After 5 seconds, a CCD camera made digitalized standard 
photos. We used ImageJ software (National Institutes 
of Health, Bethesda, Maryland, USA) and a plugin 
(DropSnake) for image processing, which was previously 
described by Stalder et al.34

Topographical Evaluation and Surface Roughness 
Measurement
Phase imaging of the discs used was performed in the 
previous step (n = 30) via an atomic force microscopy 
(easyscan 2, Nanosurf AG, Liestal, Switzerland) to assess 
the topography and coarseness of discs’ surfaces. Each 
specimen’s surface was scanned in 2 points at the center, 
2 points at the perimeter, and 2 points between the center 
and perimeter. 256 × 256 resolution and 1 Hz scan rate 
were utilized to obtain topography on a 90 μm × 90 μm 
area. The accuracy of this setting is lower than 0.5 nm in 
Z axis and was 1 nm in XY axis. Prior to the scanning, all 
surfaces were blown through with cold air and cleaned by 
alcohol.

Microshear Bond Strength Measurement 
After surface processing, a cemented probe was applied 
to the sample to perform micro tensile and cutting bond 
strength tests in remaining disks (n = 120). PANAVIA F 
2.0 resin composite cement (Kuraray, Okayama, Japan) 
was filled in custom made tygon silicone tubes with an 
inner diameter 1.14 mm and 1 mm height on top of each 
disc. After light curing (Flashsoft, CMS dental, Denmark) 
for 40 seconds, the resin blocks were incubated at 37 ̊C for 
24 hours to achieve maximum chemical polymerization. 
Micro tensile tester (Bisco, Schaumburg, IL, USA) with 
tension velocity of 1 mm/min was used in this study. 
Micro-shear bond strengths were calculated by dividing 
peak load by the cross-sectional area of the composite 
cylinder. A stereomicroscope (Karl Zeiss, Germany) was 
used to evaluate bonding failure at ×10 magnification. 

Statistical Analysis 
Data analysis was performed by SPSS 20.0 software (IBM 
Corp., Armonk, NY, USA). One-way analysis of variance 
(ANOVA) at a 0.05 confidence level was used to compare 
bonding strength data and Tukey test as the post hoc. 

Results
Contact Angle 
Table 1 shows descriptive statistics of treated groups and 
untreated group (control). Plasma treatment in all groups 
significantly reduces contact angle compare with control 
(P = 0.001). Also, the comparisons between groups showed 
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significant difference (P < 0.05) except between air plasma 
and 10% argon-90% oxygen plasma (P = 0.094). Figure 1 
shows the boxplots of contact angles in study groups. 

Surface Roughness 
Descriptive statistics of study groups are presented in 
Table 2. Topographic evaluations of each group are 
showed in Figure 2 to 6. Coarseness promotion occurred 
in all plasma treated groups which was significant when 
compared to control (P < 0.05) except for the argon 
plasma treated group that significantly decreased surface 
roughness (P < 0.05). The boxplots of surface roughness 
are showed in Figure 7. 

Microshear Bond Strength
In all treated groups, microshear bond strength increased, 
except for the oxygen treated plasma group which 

decreased this strength (Table 3). Air and argon-oxygen 
combination (both groups) significantly increased 
microshear bond strength (P < 0.05). Figure 8 shows 
the boxplots of means of microshear bond strength in 
different plasma treated groups and without treatment 
group. 

Discussion
Due to mechanical properties of ceramic based zirconia, 
obtaining appropriate bonding of Y-TZP in dental 
procedures is difficult.7,11,35 Several treatments have been 
used in studies to improve bonding properties of these 
materials.7,15,20,22,24,29,30,36,37 Recently, it has been suggested 
that the application of plasma can lead to enhanced 
zirconia-resin bonding by making changes on the surfaces 
of Y-TZP.31-33 In the present study, we assessed the effects 
of various types of non-thermal plasmas on Y-TZP in 
terms of surface properties and bonding strength.

Table 1. Means of Contact Angle in Different Plasma Treated 
Groups and Without Treatment Group (Control)

Study Groups Mean Standard Deviation

Control 63.00 2.000

Oxygen 32.00 4.000

Air 27.00 1.000

Argon 33.00 3.000

10% Argon-90% Oxygen 34.00 1.000

20% Argon-80% Oxygen 23.00 2.000

Table 2. Means of Surface Coarseness in Different Plasma Treated 
Groups and Without Treatment Group (Control)

Study Groups Mean Standard Deviation

Control 8.00 0.000

Oxygen 23.03 1.000

Air 10.00 0.000

Argon 4.00 0.000

10% Argon-90% Oxygen 14.00 0.000

20% Argon-80% Oxygen 17.00 0.000

 

 
 

 

Figure 1. Boxplots for contact angles (degree) of different plasma treated groups and without 
treatment group (control) 
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Figure 1. Boxplots for Contact Angles (Degree) of Different 
Plasma Treated Groups and Without Treatment Group (Control).

Figure 2. Topographical Evaluations of Specimens’ Surface of 
Untreated Group (Control).

Figure 2. Topographical Evaluations of Specimens’ Surface of 
Untreated Group (Control).

 

 

Figure 2. Topographical evaluations of specimens' surface of untreated group (control) 

 

 

Figure 3. Topographical evaluations of specimens' surface of Argon plasma treated group  

Figure 3. Topographical Evaluations of Specimens’ Surface of 
Argon Plasma Treated Group.

 

 

Figure 2. Topographical evaluations of specimens' surface of untreated group (control) 

 

 

Figure 3. Topographical evaluations of specimens' surface of Argon plasma treated group  

 

Figure 4. Topographical evaluations of specimens' surface of Air plasma treated group  

 

 

Figure 5. Topographical evaluations of specimens' surface of Oxygen plasma treated group  

 

Figure 4. Topographical Evaluations of Specimens’ Surface of Air 
Plasma Treated Group.
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Surface energy (SE) is a term that expresses the 
intermolecular forces on the surface of a material and 
it depends on the values of the polar and disperse 
components of surface.38 Greater value of the SE leads 
to better wettability of the surface and better bonding  
properties of the material.39 A common way for calculating 
the SE of a surface is contact angle measurements of 
liquids which amount has a reverse relationship with 
SE.38 The findings of the present study indicated that all 
kinds of plasma treatments reduced the contact angle of 
zirconia. These findings are consistent with Noro et al40 
and Valverde et al31 studies. In Valverde et al31 study, it 
has been suggested that the reason for this phenomenon 
is that after plasma application, O elements in the surface 
will increase which leads to higher polarity. It also 
has been reported that gas of the plasma increases the 
formation of the active peroxide radicals and excessive 
functional groups (such as C-O and C-OH) on the treated 
surfaces of inert materials like Y-TZP, which cause higher 
SE.41,42 Formation of oxygen functional groups on zirconia 
after using plasma was confirmed by XPS analysis in Noro 
et al40 study. Due to higher polarity which could result in 
greater SE value and wettability, the adhesion properties 
and bonding strength of zirconia will be enhanced by the 
application of plasma.31,39,43

In the field of microshear bond strength, air and argon-
oxygen groups increased microshear bond strength, but 
there were no significant differences between control 
group and other study groups. In Derand et al study,10 it has 
been reported that shear strength between zirconia surface 
and resin intensified by the RF plasma treatment. Also, 

 

Figure 4. Topographical evaluations of specimens' surface of Air plasma treated group  

 

 

Figure 5. Topographical evaluations of specimens' surface of Oxygen plasma treated group  

 Figure 5. Topographical Evaluations of Specimens’ Surface of 
Oxygen Plasma Treated Group. 

Figure 7. Boxplots for Surface Roughness (nm) of Different Plasma 
Treated Groups and Without Treatment Group (Control). 

Figure 6. Topographical Evaluations of Specimens’ Surface of 
Combination of Argon and Oxygen Plasma Treated Group.

 

Figure 6. Topographical evaluations of specimens' surface of combination of Argon and Oxygen 
plasma treated group  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 7. Boxplots for surface roughness (nm) of different plasma treated groups and without 
treatment group (control) 
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Figure 8. Boxplots for Microshear Bond Strength (MPa) of Different 
Plasma Treated Groups and Without Treatment Group (Control)

Table 3. Means of Microshear Bond Strength in Different Plasma 
Treated Groups and Without Treatment Group (Control)

Study Groups Mean Standard Deviation

Control 25.05 3.00125

Oxygen 22.00 2.08986

Air 42.00 2.04158

Argon 27.00 3.00000

10% Argon-90% Oxygen 30.00 1.05276

20% Argon-80% Oxygen 44.00 3.00000

Ito et al44 suggested that the application of atmospheric-
pressure low temperature plasma enhance shear bonding 
strength of zirconia. As it has been mentioned before, 
application of plasma can enhance bonding strengths 
by increasing the SE value. Another mechanism for this 
improvement, is that gas plasma treatment removes 
organic contamination of zirconia by breaking C-H and 
C-C bonds.31,45

As previously mentioned, the airborne Al2O3 particle 
abrasion of zirconia ceramics surface has been reported 
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as effective treatment in some literatures.20-24 Ito et al44 

compared this treatment with gas plasma treatment. They 
reported that these treatments both increased the shear 
bond strength but there were no significant differences 
between them. They suggested that Al2O3 particle abrasion 
affect crystal structure of zirconia and generate micro-
cracks which leads to higher SE and better wettability and 
bonding properties.
One of advantages of this study was performing the 
process in a simpler environment. The reactor used in 
this study was cheaper and easily made. This reactor 
works in atmosphere pressure and therefore do not 
need vacuity equipment. This study used direct plasma 
processing in which ions together with electrons have 
great role in making reactions, while indirect processing 
has lower efficiency. Using air as a plasma environment 
producing gas was the next benefit that results in isolated 
chamber deletion from reactor and this can lead to easier 
processing in shorter time. 

Conclusion
Based on our findings, it could be concluded that; (1) 
plasma processing of Y-TZP with oxygen, argon, air 
and the combination of oxygen and argon decreases the 
contact angle and in other words increases the SE. (2) 
Plasma processing of Y-TZP with above gases decreases 
the coarseness of surface. (3) Plasma processing of Y-TZP 
increases the shear bond strength using air and the 
combination of oxygen and argon as plasma gases. Since 
we conducted bonding immediately after treatment and 
then assessed the bonding properties of Y-TZP surface, 
we suggest that further studies investigate long term effect 
of plasma treatment of Y-TZP because the active surface 
state changes over time.
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