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Abstract 

Background: The potential neuroprotective role of estradiol in 

neurodegenerative diseases (NDs), suggests the role of hormone replacement 

therapy (HRT) in NDs. The present study investigated the possible beneficial 

implications of the exogenous β estradiol (ES) in the neuro-apoptosis signaling 

pathways in the hippocampus following long-term ovariectomy (OVX).  

Materials and Methods: Thirty Wistar adult female rats were randomly 

assigned to 5 identical groups (n=6): 1-control (intact rats), 2-OVX 

(ovariectomized rats), 3-OVX+estradiol (eight weeks after ovariectomy, then 

intramuscular injection of 20µg/rat β estradiol for 30 days), 4-surgical sham 

(underwent only surgical incision), and 5-vehicle sham (eight weeks after 

ovariectomy, received sesame oil for 30 days). Three months following the 

assignment (two months post-OVX plus one month of estradiol injection for the 

intervention group), animals were perfused, and the hippocampus was obtained 

from all rats for molecular and histological studies. Nissl staining for neuronal 

cell counting and western blot for expression of cleaved caspase-3 and 

cytochrome-c were performed.  

Results: Hippocampal neural density decreased in the OVX group (P<0.01 

compared to the control), while it was restored in the OVX+ES group (P<0.01 

compared to both OVX and sham vehicle groups). Furthermore, the 

cytochrome-c and cleaved caspase-3 expression increased in the OVX group in 

comparison to the control (P<0.01), whereas that of the OVX+ES decreased 

compared to the OVX group (P<0.01). In conclusion, diminished hippocampal 

neural density and overexpression of apoptotic proteins were observed in the 

OVX group.  

Conclusion: Estradiol could preclude neural loss and reduce apoptotic protein 

expression, providing an important estrogen-induced neuroprotection 

mechanism via the apoptosis signaling pathway inhibition, this needs to be 

confirmed in further studies. 
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Introduction  

Neurodegeneration is a complex multifactorial 

phenomenon resulting in neurodegenerative diseases 

(NDs) and imposing a negative impact on individuals 

and healthcare systems (1, 2). Alzheimer’s and 

Parkinson’s disease are two major NDs with noticeable 

growth in recent decades (3). In the course of such 

diseases, the hippocampus undergoes extensive 

neuronal loss through cellular and molecular 

alterations with known or unknown mechanisms. 

Owing to the high-level expression of estrogen 

receptors in the hippocampus, studies have suggested 

the hippocampus as a potent target for hormone 

replacement therapy (HRT) with estradiol (4). 

Estradiol as the major regulator of the female 

reproductive system easily diffuses across biological 

membranes such as the blood-brain barrier and 

dramatically influences the development and 

protection of various tissues, including the heart (5), 

the immune system (6), and the central nervous 

systems (7). estradiol exerts its neurotrophic and 

neuroprotective effects via binding to specific 

receptors of the limbic structures, such as the 

hippocampus, especially in the CA1 and CA3 

pyramidal neurons (8).  

The potential neuroprotective role of estradiol 

has been described in a variety of mechanisms, 

including axonal and synaptic promotion (9, 10), 

antioxidant and anti-inflammatory properties (11), β-

amyloid peptide deposition (12), and expression of 

anti-apoptotic factors in neurons (13). Moreover, 

estradiol enhances synaptic and astrocyte density in the 

hippocampal CA1 region and also increases synaptic 

protein expression, such as synaptophysin, spinophilin, 

and postsynaptic density 95 (PSD-95) (14). Several 

neural synaptogenesis signaling pathways, including 

MAPK/ERK and CREB, PI3K/Akt, and CamKII could 

be initiated by estradiol, resulting in structural and 

functional plasticity in various areas of the 

hippocampus (15). In addition, estradiol enhances 

learning and memory behavior through excitatory N-

Methyl-D-Aspartate (NMDA), inhibitory GABAergic 

neurotransmission, and activating the cholinergic 

system (16). The involvement of estradiol in 

antiapoptotic actions is through several intracellular 

signaling pathways, the intrinsic and extrinsic 

pathways, resulting in the inactivation of caspase-3, 

cytochrome C (Cyt-c) translocation (17), and enhanced 

Bcl-2 and Bad (Bcl-2-antagonist of cell death) 

expression (18). It has been revealed that Bcl-2 and 

Bcl-XL block the translocation of Cyt-c from 

mitochondria to the cytosol which, in turn, inhibits 

caspase activation and cell apoptosis. The activation of 

these two anti-apoptotic genes in the neurons of the 

hippocampus is regulated by estradiol, and their 

expression diminishes following ovariectomy (OVX) 

(19). Moreover, the inhibitory role of estradiol on 

hippocampal neuron injury is through preventing TRP 

melastatin 2 (TRPM2) and TRP vanilloid 1 (TRPV1) 

activation (20). In addition to sexual dimorphism in 

certain parts of the nervous system that are reported 

previously, it has been shown that sex differences also 

exist in the neuroprotective effects of estradiol, 

suggesting that estradiol triggers a sexually dimorphic 

pattern in neurogenesis (9, 21).  

NDs have become a growing concern and a 

severe health problem in many societies, which limits 

patients’ quality of life and impose a significant global 

economic burden on individuals as well as healthcare 

systems. Currently, there is no promising therapeutic 

agent for NDs, but recent studies investigated the 

potential effect of systemic estradiol therapy on 

cognition improvement in postmenopausal women 

(22-24). However, the exact effect of estradiol 

replacement therapy following OVX on memory and 

cognition function within the brain remained to be 

better explored. So the present study aimed to examine 

the possible effects of systemic estradiol replacement 

therapy on the expression of apoptotic proteins in rat 

hippocampus following bilateral OVX in an in vivo 

model system. 

 

 

Methods 

Ethical publication statement: All protocols were 

confirmed by the Ethics Committee of Shahid Beheshti 

University of Medical Sciences 

(IR.SBMU.MSP.REC.1399.426). 

 

Animals: Animals: A total of 30 adult female Wistar 

rats (200-220g body weight, 7-8 weeks old) were 

provided from the Laboratory Animal Center of Iran 

University of Medical Sciences (Tehran, Iran). All 
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animals were kept in the individual polycarbonate cage 

with unrestricted access to water and food, under 

standard conditions (12h/12h light/dark cycle, 23±2°C, 

humidity 50–60%) following the Ethics Committee, 

Shahid Beheshti University of Medical Sciences 

(IR.SBMU.MSP.REC.1399.426). Subsequently, all 

animals were randomized into five identical 

experimental groups (n=6): 1. Control group (intact 

animals) 2. OVX group, 3- OVX+ ES group (eight 

weeks following OVX, this group received an 

intramuscular injection of β ES (20µg/rat) for 30 days) 

4. Surgical sham (underwent only the surgical incision 

for OVX) and 5. Vehicle sham (eight weeks following 

OVX, this group received sesame oil for 30 days). 

Animals were sacrificed after three months (equivalent 

to eight weeks post-OVX and 30 days of ES 

administration for the intervention group), and samples 

were obtained for histological (n=3) and molecular 

(n=3) assessments. 

 

 

OVX surgery: Animals were anesthetized by a 

combination of intraperitoneal (IP) ketamine (20 

mg/kg) and xylazine (10 mg/kg). Following induction 

of anesthesia, an abdominal incision was made, and 

both ovaries got dissected ventrally. Subsequently, the 

incision was sutured. Tetracycline ointment was used 

to prevent surgical site infection.  

 

Blood estrogen level measurement: Three months 

after the intervention assignment, one cc blood sample 

was taken from the rats’ hearts using a microcapillair 

and centrifuged (3000rpm for 10 minutes). 

Subsequently, serum was separated and exposed to the 

Mouse/Rat Estradiol ELISA kit (Sigma-Aldrich, USA) 

to measure the estrogen level.  

 

Perfusion, fixation, and sectioning: At the end of the 

experiment, three rats in each experimental group were 

deeply anesthetized (10 mg/kg diazepam and 80 mg/kg 

ketamine, IP), and then saline washed and fixed 

transcardially by aldehyde solution (paraformaldehyde 

4%), followed by 10% sucrose solution in phosphate 

buffer saline (PBS) 0.1M, PH 7.4. Subsequently, rats’ 

brains were removed immediately and kept in graded 

sucrose solution (10, 20, and 30 %) at 4 ◦C for three 

days overnight.  

The rats’ hippocampus was identified using the 

Paxinos atlas. The cryostat provided serial 20 µm 

coronal sections. Subsequently, gelatin-coated slides 

were prepared for staining. Serial coronal sections of 

20 µm were prepared using a cryostat.  

 

Nissl staining: Nissl staining was performed as 

described previously elsewhere (25). By light 

microscopy, the number of neurons in all the subfields 

of rat hippocampus (CA1, CA2, CA3, DG) was 

assessed using Image j software (version 1.48).  

 

Western blotting technique: Three rats were 

sacrificed from each group, and their hippocampus was 

rapidly removed. Western blotting evaluated the 

expression of Cyt-c and cleaved caspase-3 protein. The 

Radioimmunoprecipitation Assay (RIPA) buffer was 

used to extract the whole hippocampus tissue protein. 

This buffer helps to break the tissues and cellular 

components, causing the proteins to separate from 

other cellular parts. The suspension was centrifuged for 

15 minutes at 14000 rpm and 4°C and deposited at -20 

°C until use. Protein concentration (Cyt-c, cleaved 

caspase-3, β-actin) from the homogenized 

hippocampus was measured with the Bradford assay 

(Bio-Rad Laboratories, Germany). Next, a similar 

amount of loading buffer was added to the samples (15 

µg) and boiled for 5 min. Sample proteins were treated 

with 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and then moved to 

polyvinylidene difluoride (PVDF) membranes 

(Millipore). PVDF membrane was kept overnight 

(4◦C) in 2% non-fat powdered milk and Tris-buffered 

saline contains (Tris-buffered saline with Tween 20, 

TBS-T). Then, the PVDF membranes were washed to 

remove the extra blocking solution and incubated with 

Cyt-c, cleaved caspase-3, and β-actin (room 

temperature for 3 hours). After being washed with 

TBS-T, samples were treated with horseradish 

peroxidase-conjugated secondary antibody (room 

temperature for 60 minutes). The 

Electrochemiluminescence (ECL) assay was used to 

detect antibody-antigen complexes. Finally, the images 

of the bands recorded on the film were checked for 

protein density using the Lab Work analyzing 

software.  
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Statistical Analysis: Descriptive data are reported as 

mean ± SEM. Protein density values were measured by 

band densitometry and calculated based on the ratio of 

protein/beta-actin expression. One-way analysis of 

variance (ANOVA) and post hoc test (Newman-Keuls) 

were performed for multiple comparisons between 

experimental groups (25). P<0.05 was considered the 

minimum level of significance. 

 

 

Results 

Validation of the menopause model by 

ovariectomy: Removed ovaries were stained by H&E 

staining to confirm the complete removal of ovaries 

and histological study. In addition, all animals whose 

ovaries were removed (the OVX and sham vehicle 

groups) showed marked atrophy of the external genital 

system eight weeks after the surgery. Figure 1-A shows 

the removal of complete ovaries. Circulating estrogen 

level was significantly lower among the OVX and 

vehicle sham groups compared to the control (both 

P<0.01). Further, there was a significant increase in the 

circulating estrogen level of the OVX+ ES in 

comparison to the OVX group (P<0.001, Fig. 1B). No 

significant difference was observed between the 

OVX+ES group and the control group. 

 

Hippocampal neuronal number by Nissl staining: 

Figure 2A. and 2B. demonstrate the Nissl-stained 

neurons. There was a significant decrease in the 

number of hippocampal neurons in the OVX and 

vehicle sham group compared to their control 

counterparts (both P<0.001). The absence of a 

significant difference between the surgical sham and 

control indicated that this decrease could be attributed 

to the OVX surgery (not the surgical incision).  

In contrast, there was a significant restoration in 

the neuronal number in the OVX+ES group than in 

both OVX and sham vehicle groups (both P<0.01). The 

absence of a significant difference in the neuronal 

count between the sham vehicle and OVX group can 

be accredited to ES administration (and not the sesame 

oil). Further, neuronal numbers did not differ 

significantly between the OVX+ES and control 

groups. 

 

Hippocampal Cyt-c and cleaved caspase-3 

expression by Western blotting: Fig. 3 illustrates the 

Cyt-c and cleaved caspase-3 protein expression in the 

rat hippocampus. According to the Nissl staining 

results, in which there was no evidence in favor of 

neuronal reduction or apoptosis in the control group, 

this group was excluded from western blotting to 

comply with the responsibility for reducing the number 

of animals in ethical guidelines. Apoptotic protein 

expression was significantly lower in the surgical sham 

compared to the OVX group (P<0.01), implying that 

the OVX surgery was to blame for this overexpression. 

The expression did not differ significantly between the 

vehicle sham and OVX group, indicating the lack of 

sesame oil influence. We found a significant decrease 

in Cyt-c and cleaved caspase-3 expression in the 

OVX+estradiol group compared to the OVX group 

(both P<0.01). At the same time, there was no 

significant difference compared to the vehicle sham, 

indicating that this phenomenon attributes to the 

administration of β estradiol and not the sesame oil. 

 

 

Discussion 

Based on many previous studies, long-term ovarian 

steroid depletion following OVX or during the 

menopause period dramatically affects various body 

systems, including the heart, immune and nervous 

systems (26). Our findings confirmed the 

neuroprotective effects of estradiol on the 

hippocampus region of adult female menopausal 

model rats, as mentioned in our previous works (10, 

25). Following the OVX and the decrease in circulating 

estrogen level, hippocampal neuronal death and 

increased apoptotic protein expressions were observed. 

Subsequently, treatment with estradiol prevented 

apoptotic events and neuronal death by regulating the 

expression of cleaved caspase-3 and cyt-c proteins. 

The molecular and cellular neuroprotective 

mechanisms of estradiol have been previously depicted 

in experimental and clinical research (8, 24, 25). It has 

been shown that sex steroid hormones, due to their size 

https://creativecommons.org/licenses/by-nc/4.0/
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(25-50 KD), could easily pass the blood-brain barrier 

and insert their effects on certain structures of the 

brain. These effects include genomic (classical or 

structural) and non-genomic (non-structural) 

implications that finally lead to sexual dimorphism in 

the structure and function of the nervous system in all 

vertebrates, including mammals (27). In addition to 

brain sexual dimorphism, the sex steroid hormones, 

mainly female estradiol hormone, have well-known 

neuroprotective, anti-apoptotic, and antioxidant 

properties (28). Accordingly, any decrease in sex 

steroid hormones circulating level, mainly estradiol, 

leads to cellular and molecular changes in neural 

structures, such as neuronal death, and decreased 

neuronal, synaptic, and dendritic spines density. The 

expression of pro-apoptotic proteins has been reported 

to increase following ovariectomy. In addition to 

gonadal sex steroids, there are also neurosteroids 

(synthesized by certain neurons), steroids from adrenal 

glands (29, 30), and steroids with external sources 

(exogenous steroids), all of which almost play similar 

roles in the nervous system (31, 32). All of these 

neuroactive steroids easily cross the blood-brain 

barrier and use their factors via binding to classical and 

nonclassical receptors on different sections of the 

Central Nervous System includes corpus callosum (33) 

and anterior commissure (34), the bulbocavernosus 

spinal nucleus (35), spinal motor neurons (36), 

Purkinje neurons (37), hippocampal pyramidal 

neurons (38), the bed nucleus of the stria terminalis 

(BNST) (39), substantia nigra (40), raphe nuclei (41) 

and nigrostriatal dopaminergic neurons (42-44). 

Within these structures, estradiol mediates neuronal 

survival through several mechanisms, such as 

antioxidant activity (45), synaptic formation (46), and 

DNA repair of the central nervous system (47). In this 

regard, studies have indicated a neural loss in the 

dendritic spine of dorsal and median raphe nuclei 

following deprivation of ovarian steroid hormones 

after OVX (41, 48). The current result regarding 

apoptotic cell death and DNA fragmentation in the 

hippocampus following ovariectomy is in line with a 

previous study that emphasized the neuroprotective 

function of estradiol on the association between steroid 

hormone deprivation and neuronal viability in 

hippocampal cells of CA1, CA2, and CA3 areas (19). 

Although the exact molecular and signaling 

mechanisms of these effects are still unknown, there 

are some possible suggested mechanisms. As reported 

previously, brain-derived neurotrophic factor (BDNF) 

and its receptor TrkB could be upregulated by estradiol 

which as result promotes neurogenesis and 

differentiation of hippocampal neurons as well as 

modulates apoptosis (49). Furthermore, estradiol could 

activate the ERK/MAPK pathway that is responsible 

 
 

 

Figure 1. (A) H & E of ovarian tissue in the OVX group. (*: blood vessels, arrow: follicle). Scale bar: 50 µm. (B). The 

estrogen level of the experimental groups  (n=6). Data are presented as mean±SEM.. ## P<0.01 for OVX/sham vehicle 
vs. control; ***P<0.001 for OVX+β Estradiol vs. OVX. 

 

A 

 

B 
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for the phosphorylation of CREB and next positive 

adjustment of the Bcl2 in hippocampal CA1 pyramidal 

cells (48). In addition, it has been observed that G-

protein coupled receptors (GPR) intervene rapid 

effects of estradiol on synaptic transmission and have 

a decisive role in the activation of the MAPK and/or 

 

 
Figure 2. (A) Representative photographs of the Nissl-stained rat hippocampus. (B) The number of hippocampal neural 

cells in the experimental groups (n=3 for each group). Data are presented as mean±SEM**P<0.01 and ## P<0.01. 

 

A 

B 
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PI3K/Akt cellular pathways which prevent apoptotic 

cell death (50). Another possibility is that neuronal cell 

death could be the result of oxidative stress, which 

mediates mitochondrial dysfunction, abnormal Ca2+ 

accumulation, and activation of death signaling 

cascades; and it is believed that estradiol contributes to 

neural protection against oxidative toxicity (51). In this 

respect, Sales et al. investigated the mRNA levels of 

Bcl-2 and Bax proteins in rat hippocampus after 

ovariectomy. They observed that the physiological 

concentration of beta-estradiol therapy maintained 

neuronal survival in the hippocampus and also bring on 

a reduction in expression of apoptotic proteins and the 

formation of apoptotic bodies (19). Similarly, in 

another study, it has been shown that long-term 

estrogen or tamoxifen administration in 

ovariectomized rats results in the modulation of Bax 

and Bcl-2 proteins within the hippocampus (50). 

Tamoxifen and beta-estradiol had similar 

consequences on the expression of these two proteins, 

and these findings not only confirmed the 

neuroprotective effects of beta-estradiol but also 

claimed that beta-estradiol and tamoxifen have 

therapeutic potential for neurodegenerative diseases, 

especially during menopause (52). Our results chime in 

with those of Jover et al. who showed the protective 

therapeutic effects of estrogen in ischemia-induced 

neuronal cell death and also modulated the apoptotic 

cascades. They reported that estrogen downregulates 

the activity of caspase 3 in an estrogen receptor-

dependent manner within the hippocampal CA1 region 

(53). Nevertheless, Nunez et al. demonstrated that 

administration of estradiol aggravated hippocampal 

neuron death in a model of hypoxia-ischemia of 

preterm infants (54). 

Moreover, estradiol has protective effects on 

reducing beta-amyloid plaques in postmenopausal 

women with AD (55). Accumulation of β-amyloid 

protein (Aβ) is a pivotal risk factor in AD. However, 

estradiol would potentially reduce Aβ neurotoxicity 

through upregulation of PPAR expression and 

reduction in APP processing by γ-secretase, which 

 
Figure 3. Protein level of A) Cleaved caspase-3 and B) Cyt-c in the hippocampus of experimental groups (n=3 for each 

group). Data are presented as mean±SEM ++ P<0.01 compared to the OVX group. 
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accordingly causes a decrease in Aβ peptide formation 

(11). 

 

Conclusion 

In conclusion, the present study indicated that estradiol 

administration maintains neural viability and regulates 

neuroapoptosis by reducing the expression of Cyt-c 

and cleaved caspase-3 proteins, hence the promising 

role of HRT in alleviating NDs among postmenopausal 

women. However, the various mechanisms involved in 

estradiol -induced neuroprotection have yet to be 

explored. Future research can investigate the optimal 

dose and duration of estradiol therapy as well as its role 

in the expression of other apoptotic and anti-apoptotic 

protein families. 
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