
  Journal of Cellular & Molecular Anesthesia (JCMA)  

Vol 2, No 4, Fall 2017 
189 

1. Department of Nutrition, School of 

Public Health, Iran University of 

Medical Sciences, Tehran, Iran 

2. Department of Clinical Nutrition, 

Faculty of Nutrition and Food 

Technology, Shahid Beheshti 

University of Medical Sciences, 

Tehran, Iran 

3. Anesthesiology Research Center, 

Cardiac Anesthesiology Department, 

Shahid Beheshti University of Medical 

Sciences, Tehran, Iran 
 

 

 

 

 

 

 
 

 Corresponding Author:  

Ali Dabbagh, MD, Professor, 

Anesthesiology Research Center, 

Velenjak, Chamran Exp Way, Tehran, 

Iran.  

Email: alidabbagh@yahoo.com; 

alidabbagh@sbmu.ac.ir 

Review Article  
 

 

Acute Post-Operative Pain and Gut Microbiota; Is There Any 

(Clinical) Relationship? 
 

 
Elham Alipoor1, Mahdi Shadnoush2, Ali Dabbagh3 

Abstract 

Gut microbiota are the primary focus for a number of active research fields; 

one of their main areas of effect seem to be their effects on acute pain. 

Though it is generally realized that development of gut microbiota is after 

birth, the initial microbial core originates from maternal microbiota in fetus 

life, rapidly colonizing to adulthood microflora in 3-5 years. Understanding 

the crosstalk between microbiota, changes in gut flora and post-operative 

pain, and recognizing the underlying mechanisms are novel fields of study. 
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Introduction 

Gut microbiota 

The body microorganisms, which are also 

called microbiota, lied mainly in the gut, other 

mucous membranes and skin. It is generally believed 

that microbiota develops after birth. However, the 

initial microbial core originates from maternal 

microbiota in fetus life, and the gut colonized rapidly 

to adulthood microflora within the first 3-5 years (1). 

The physiological functions of microbiota include 

defense against pathogens, providing nutrients such as 

vitamin B12, folate, and vitamin K, and modulating 

gut integrity and permeability, which could 

consequently affect the function of the immune 

system (2).  

The fermentation of indigestible carbohydrates 

by bacteria in the colon produces rapidly absorbed 

short chain fatty acids (SCFAs). SCFAs play an 

important role in the modulation of gene expression, 

cellular differentiation, proliferation and apoptosis, 

metabolism of lipids and glucose in liver, and 

regulation of different immune cells and 

inflammatory responses (3, 4). SCFAs bind to a 

member of G-protein-coupled receptors, GPR43. 

Experimental models of colitis, arthritis and asthma 

showed that both GPR43-deficient and germ-free 

mice manifested intensified or unresolving 

inflammation (5). The production of SCFAs in 

healthy people depends on dietary factors and 

substrate availability, intestinal transit time, and 

microbiota composition and species (6). Some 

bacteria could produce neuroactive substances 

including gamma-aminobutyric acid (GABA), 

serotonin, catecholamines, histamine, and 
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acetylcholine. These metabolites not only could affect 

neurophysiology of brain development and behavior, 

but could also regulate gastrointestinal, cardiac, 

respiratory, and endocrine functions through direct 

interaction with gastrointestinal receptors or entering 

into the circulation (7, 8). 

The effects of gut microbiota could partly 

occur through small non-coding RNA molecules 

called microRNAs. It has been demonstrated that 

microRNAs could modulate host gene expression and 

gut flora could reciprocally affect host microRNA 

expression (9). Moreover, fecal microRNAs could 

modulate gut flora by targeting bacterial gene 

expression and growth (10). MicroRNAs are major 

contributors of the immune system and also, a number 

of disease states; including the clinical conditions in 

the perioperative period (11, 12). The regulation of 

microRNAs by microbiota could affect intestinal 

epithelium and play an important role in the 

pathogenesis of disorders like inflammatory bowel 

disease (13). 

Despite relatively stable microbiota during life, 

different illnesses, surgeries, medications, dietary 

factors, and lifestyle changes could contribute to the 

imbalance of body microorganisms, or dysbiosis, and 

many gastrointestinal and extra-gastrointestinal 

disorders (1). For example, clinical and experimental 

studies showed that gut microbiota change in obesity. 

An increase in the Firmicutes and decrease in the 

Bacteroidetes, two dominant bacterial divisions have 

been reported in obese state (14, 15). These 

alterations could be associated with changes in the 

metabolic function of microbiota including higher 

capacity to absorb energy of nutrients (15). In 

addition, it has been shown that intestinal microbiota 

is considerably different in children with typical 

western diets rich in fat and sugar compared to those 

in rural communities consuming foods rich in fiber. 

There was a higher richness and biodiversity in 

microbiota, but reduced pathogenic strains with high 

fiber diets (16). Dietary fats, especially the saturated 

types, can change the composition of bile acids and 

gut flora, which in turn can cause dysbiosis and affect 

the immune function of the host (17). Stress could 

also substantially affect gut physiology and 

microbiota through reducing the beneficial 

Lactobacillus strain and increase pathogens like E. 

coli (18). Antimicrobial therapies affect the 

abundance and function of gut microbiota, which may 

lead to long-term dysbiosis and consequent disorders 

(19). 

The role of gut microbiota in the perioperative 

period diseases 

Previous studies have mainly focused on the 

role of microbiome diversity and abundance in 

chronic disorders including obesity, diabetes, 

intestinal disorders such as inflammatory bowel 

disease, irritable bowel syndrome (IBS), and 

colorectal cancer. The role of gut flora, and especially 

probiotics, has been considered recently in critical 

care. Probiotic refers to live nonpathogenic 

microorganisms, most commonly Lactobacillus and 

Bifidobacterium, that their sufficient amounts exert 

many health benefits through recovery of gut 

microbial balance (20). During critical illness, many 

factors could disturb the normal physiologic gut 

microbiota. The trauma or disease induced stress, 

along with medications like antibiotics, 

catecholamines and histamine H2 receptor blockers, 

and other supportive treatments such as artificial 

respiration might be involved (21). Remarkable 

alterations in the gut flora are also seen in digestive 

surgeries due to bowel cleansing (22). Many surgeries 

are accompanied with pre- and post- fasting state as a 

part of treatment or insufficient nutrition support. The 

direct effects of starvation on gut microbiota in 

critical conditions are not still well described. 

However, it has been observed that undernutrition in 

children and anorexia nervosa in young adults are 

associated with substantial changes in bacterial 

diversity and abundance (23, 24).  

Gut microbiota and pain (acute and chronic) 

The clinical effects of interventions on 

microbiota have been assessed in different types of 

major abdominal surgeries including liver 

transplantation, hepatectomy, and other organ 

resections. These studies mainly evaluated outcomes 

including immune function and infectious 

complication, antibiotic-associated diarrhea, epithelial 

permeability, duration of antibiotics use, and duration 

of hospital stay (21, 25).  

Post-operative pain is one of the most 

important complications in surgical patients. Few data 

is available on the relationship of this kind of acute 
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pain with gut microbiota and the effect of relevant 

interventions. However, the effect of gut microbiota 

as a key regulator of visceral pain has been stated 

recently. Visceral pain is referred to pain from 

internal organs such as abdomen, thorax or pelvis and 

is most prevalent in functional gastrointestinal 

disorders (26). Many animal studies have confirmed 

the involvement of gut microbiota on visceral pain. 

For example, it has been reported that germ-free mice 

showed visceral hypersensitivity. Besides, an 

increased gene expression of Toll-like receptors and 

cytokines in the spinal cord, and structural changes in 

brain areas responsible for pain perception were 

observed. Visceral hypersensitivity, pain threshold 

and many other mentioned disorders were reversed 

following microbial colonization (27). Interestingly, it 

has been observed that visceral hypersensitivity can 

be transferred from fecal microbiota of patients with 

IBS to germ free rats (28).  

These findings suggest a promise in managing 

perioperative pain in patients. In other words, 

preventive or therapeutic strategies are designed to 

ameliorate perioperative pain based on the 

interactions of gut microbiota on pain inducing 

mechanisms; these strategies though till a bit 

premature, could be a real promise in finding novel 

therapeutic approaches in pain management; both for 

acute and chronic pain. Some of these new 

perspectives are discussed in the next paragraphs (29-

36). 

Acute post-operative pain is among the most 

common and at times, intractable clinical challenges; 

with a number of therapeutic modalities being used 

for its management; however, a considerable number 

of patients suffer acute postoperative pain despite all 

these efforts; leading to both psychological burden 

and aftermath of physiologic or pathologic stress 

response due to acute pain. Though pharmaceutical 

agents are used as the main armamentarium in acute 

pain management, they lack complete efficacy in 

resolving acute pain; meanwhile, there are associated 

with a number of undesirable side effects which some 

of them are really major events. During the last 

decades, a larger number of acute pain studies have 

been involved to finding new treatments and during 

the recent years, there are studies exploring the 

considerable efficacy of modulating gut microbiota in 

alleviating acute postoperative pain (37-41). 

Implications for future studies 

Understanding the crosstalk between 

microbiota, changes in gut flora and post-operative 

pain, and recognizing the underlying mechanisms are 

novel fields of study. The potential clinical benefit of 

using probiotics in the management of acute pain is 

also of importance. Despite, differences in the nature 

of visceral and post-operative pains, it has been 

observed that some probiotics could relieve stress 

induced visceral pain in rodents. After 14 days oral 

gavage of three different probiotic strains, 

Bifidobacterium infantis 35624 decreased visceral 

pain behaviors in rats with colorectal distension (42). 

Oral Lactobacillus farciminis had similar 

antinociceptive effect in rats following colorectal 

distension and prevented stress induced 

hypersensitivity (43). A systematic review of clinical 

studies showed that specific probiotics could affect 

abdominal pain in some patients with IBS. Moreover, 

21 days supplementation with the probiotic 

Lactobacillus acidophilus NCFM increased the 

mRNA and protein expression of mu-opioid receptor 

in women with mild to moderate abdominal pain. 

Combination of Lactobacillus acidophilus NCFM 

with Bifidobacterium lactis Bi-07 decreased the 

number of days with abdominal pain significantly 

(44).  

It should be considered that the effects of 

probiotics are strain and formulation specific and 

varies from one to another. Thus, the clinical efficacy 

could not be extended to other pathophysiological 

conditions such as post-operative surgery. The safety 

and dosage of administration should be determined in 

each disease separately. Thus, further well-designed 

experimental and clinical studies are required to 

investigate the interaction between gut microbiota and 

acute post-operative pain, and the efficacy of 

probiotic supplementation. 

Conclusion 

The results of recent researches open new 

windows to management of pain through 

manipulation of gut microbiota. These results are 

wide and still need further assessment for clinical 

applicability. 
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