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Abstract 

Anesthesiology is one of the most important creations of the modern science, 

basically based on the anesthetic drugs; however, there are a few concerns 

regarding the effects of the anesthetic drugs. Would there be any progress in 

the current trend of anesthesiology, both clinically and basically. There would 

be a possibility to use the physiologic mechanisms of sleep to be incorporated 

into clinical practice instead of pharmacologic agents in order to decrease 

their unwanted effects. 
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Introduction 

Anesthesiology is a relatively new convention 

of medicine. Many surgeries are nowadays performed 

just because we can anesthetize patients; otherwise, 

there was no progress in the many fields of surgery. 

In the United States, nearly 60,000 patients are 

anesthetized each day, mainly for surgical operation. 

The first time that anesthesia was "created", 

one of the greatest fears of mankind was overcome 

(1): since the first patient was anesthetized in October 

16, 1846 by Dr William T. G. Morton at 

Massachusetts General Hospital, Boston, the science 

and practice of anesthesiology has made many great 

developments, increasing its efficacy and safety and 

at the same time, decreasing the anesthesia-related 

morbidity and mortality (2, 3). 

In the current era of modern anesthesiology, 

the practice and science of anesthesia is composed of 

4 basic elements; each being one of its permanent 

counterparts; without each of them, anesthesia is not 

complete. These 4 basic elements are (4, 5): 

1) hypnosis (an iatrogenic pharmacologic-

based coma) 

2) amnesia (forgetting the unpleasant events 

during operation) 

3) analgesia (painlessness) 

4) akinesia (lack of movements in response to 

noxious stimuli, including the surgical 

incisions and manipulations). 

Very interesting issue is that all of these basic 

elements of anesthesia are created after interaction of 

anesthetic drugs with different parts of the nervous 

system (including central, peripheral, and autonomic 

nervous systems). However, CNS remains the 

primary site of action for "anesthesia". In other words, 

anesthesia is an iatrogenic, reversible, pharmacologic-

based coma; affecting CNS neuronal circuits at many 

levels including the molecular level; for example, the 

mechanism of anesthesia in some volatile agents (i.e. 

Isoflurane and Sevoflurane) is through inhibition of 
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orexinergic neurons; also, ketamine acts through 

“pyramidal cells and also, seven different types of 

CA1 interneurons” (6-13) or amnesia is induced 

primarily through effects of anesthetics on 

hippocampus neurons (14-16). Also, the majority of 

CNS anesthetics act through N-methyl-D-aspartate 

(NMDA) receptor or gamma-amino butyric acid 

(GABA) receptor subunits (17-30). 

Globally, some believe that anesthesia 

induction is due to “drug-induced global modulation 

of neuronal function”; meanwhile, termination of 

anesthesia is spontaneous and passive, occurring after 

termination of pharmacologic effects of anesthetics 

from “their sites in the central nervous system”; 

though this mechanism might be somewhat 

oversimplification and the neural inertia could have a 

role (31-36). 

But are we doing anesthesia in a right way? 

Are the modern anesthetic drugs as safe and 

physiology-compatible as we want? To answer this 

questions, one could consider the many animal and 

human studies proving the very safe anesthetic agents 

and the very diminutive incidence of unwanted effects 

of anesthetic drugs. Despite the many available proofs 

for modern anesthesia safety, there are some 

considerations regarding the effects of anesthetics on 

organ functions described in the following 

paragraphs. 

If we want to discuss more specifically, 

anesthesia is not so much physiologic. It is 

demonstrated in cerebral cortex and hippocampus 

neurons of rats that neuronal spikes from these sites 

are “very stable across physiologic states i.e. waking, 

slow-wave sleep and rapid-eye-movement sleep”; 

however, these neuronal spikes and avalanches 

“would collapse during anesthesia”. Also, waiting 

time distributions obey a single scaling function 

during all natural behavioral states, but not during 

anesthesia (34, 36-38). 

From another viewpoint, anesthesia is an 

iatrogenic pharmacologic based coma; of course with 

a reversible nature. In fact, electroencephalographic 

studies performed in patients undergoing general 

anesthesia has demonstrated an EEG pattern similar 

to patients with coma; in other words, the EEG waves 

in "comatose patients" and "patients undergoing 

general anesthesia" both demonstrate high amplitude, 

low-frequency waves (4, 39, 40). 

Now let's discuss the issue from a different 

viewpoint; i.e. the neurophysiologic point of view. 

During normal sleep, the arousal status is depressed 

and we would go unconscious. During the rapid eye 

movement (REM) phase of sleep, EEG waves have an 

active high-frequency, low-amplitude pattern; while 

in the non- rapid eye movement (Non-REM) phase of 

sleep the EEG waves are high amplitude, low 

frequency (33, 39-44). In contrast to this dual stage 

pattern of EEG in sleep, the EEG pattern in "general 

anesthesia" or "coma" has high amplitude, low-

frequency waves. Although coma and general 

anesthesia have some similarities with the Non-REM 

phase of sleep, "coma and general anesthesia" are not 

the same as Non-REM (4, 32, 41, 45, 46). As we see, 

EEG assessments also suggest us that possibly; the 

current anesthetic pharmacologic agents are not as 

physiologic as we need. 

Concerning the clinical point of view may be 

all above comments are not as worrying as the 

following lines of this paragraph; which addresses a 

sample of the many studies published mainly in the 

last decade. There are an increasing number of 

evidence demonstrating the unwanted effects of 

anesthetic agents on the synaptogenesis processes in 

the animal neonates receiving modern anesthetic 

agents; these animal and lab studies have 

demonstrated the clues to apoptotic effects of 

anesthetics; some even well demonstrating these 

effects on animal CNS; though human CNS studies 

are not so much available due to technical problems 

(12, 46-74); also, there are a number of studies raising 

the questions regarding the effects of some of the 

current anesthetic agents on the behavioral and 

learning aspects of the human neonates, though none 

of them still have not presented definite proof for this 

effect (75). 

There are some new windows which could help 

us use the sleep mechanism as a “physiologic 

mechanism” instead of the current “pharmacologic 

mechanism” for anesthesia. In one direction, there is a 

concordance between interventions which disturb 

sleep and/or cause some types of somatic pain; in 

other words, these interventions have the “same 

direction effects” for pain and sleep; i.e. there is a 

concordance between them (76-79); so, possibly we 
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could use the physiologic mechanisms maintaining 

normal sleep for suppressing those surgical stimuli 

which create pain. On the other hand, we could use 

some newer molecules like urethane which could 

induce anesthesia with mechanisms different from 

current anesthetics; it means that urethane induces 

anesthesia with a mechanism “closely mimicking 

natural sleep” (8, 80-83). 

Conclusion 

The above paragraphs are brief concerns 

regarding the importance of a new look at our current 

approach for a very common medical practice. In 

other words, in the current era of clinical and basic 

studies, the effects of anesthetic agents in creating the 

"pharmacological coma" is a very important concern 

with high priority, in medicine, in pharmaceutical 

studies and more importantly, in neuroscience. We 

anticipate a very important turning point, which 

would add another improvement to the safety of 

anesthesia and add another revolution to the previous 

"jump up's" of this field of medicine, as a number of 

relatively safe anesthetic agents have emerged and 

shown to be neuroprotective (5, 84-90); however, this 

time, the turning point would be at the cellular and 

subcellular levels. 
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