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Abstract 
Background and Aim: Phage display technology provides a new approach for making human antibody fragments that 

could be applicable in passive immune therapy. We applied the use of this technology to make human single-chain 

variable fragments (scFvs) specific for tetanus toxin. Tetanus toxin is a neurotoxin constituted by the association of 

two subunits, mediates its lethal action by blocking neuromuscular vesicle docking.  

Methods: We previously found that six Human scFv clones inhibit toxin binding to ganglioside GT1b. This is the 

final report of human tetanus scFvs (scFv 8 and scFv 13) isolated from an immunized library of more than 106 scFv 

clones with in vivo neutralizing activity.  
Results: Only scFv 13 can reduce the in vivo toxicity induced by tetanus toxin. Also, scFv 8 has a weak capability of 

reducing the in vivo toxicity of the toxin.  

Conclusion: These selected ScFvs can be considered as a possible option to substitute the human tetanus 

immunoglobulin (HTIG) which is extensively current immunotherapy for tetanus patients. Taken together, our results 

suggest that the use of human tetanus scFvs may lead to a less aggressive passive immune therapy against tetanus. 
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Introduction 

Tetanus has remained an issue in developing 

countries (1). Tetanus toxin is a protein released by 

the bacterium Clostridium tetani that cause the 

disease symptoms(2). The tetanus neurotoxin 

(TeNT) is produced as a 150 kDa single 

polypeptide that is posted translationally cleaved to 

produce a 50 kDa light chain joined by a disulfide 

bond to a 100 kDa heavy chain (2). The heavy 

chain can be cleaved into two fragments (HN and 

HC) with distinct functions. It has been proven that 

the HC fragment is involved in binding to sensitive 

cells and subsequent internalization into vesicles. 

The HN fragment plays an important role in the 

translocation of the L-chain across the vesicular 

membrane (3). It has been proposed that the light 

chain reduces the secretion of the inhibitory 

neurotransmitter (glycine and GABA) from the 

inhibitory interneurons into the synaptic cleft by 

undergoing a retrograde transport via the nerve 

axon to the spinal cord and, thereby resulting in a 

spastic paralysis (2). 

Current management for tetanus includes TT-

containing vaccine and human tetanus 

immunoglobulin (HTIG) as immunotherapy (4-6). 

There are numerous limitations of the human-

derived immunoglobulin (7-10). Progress on 

recombinant antibody production has introduced 

new tools in the fields of therapeutic applications 

and provided an alternative to the hybridoma 

technology (11-14).  

Applying smaller antibody fragments have 

advantages over whole immunoglobulins for some 

clinical applications, such as toxin identification 

and detoxification, good penetration of solid 

tumors, and rapid clearance (15-17). Phage display 

has introduced a useful means to develop a 
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powerful method for the screening of libraries 

containing different peptides or proteins such as 

antibody fragments (11, 18-20). Currently, several 

therapeutic antibodies derived from phage display 

libraries are under clinical development (21-23). 

In this study, a previously contrasted human single-

chain fragment variable (HuscFv) phage library 

against anti-tetanus was assessed in mice model to 

find specific HuscFv antibodies against tetanus 

heavy chain(24). HuscFv phage was selected 

against TeNT and evaluated in vivo for its ability to 

neutralize the tetanus toxin. Now, we report the in 

vivo neutralizing potency of isolated scFvs specific 

for tetanus toxin from the large immunized phage 

display library described previously (24). After 

three rounds of panning, 15 scFv-phage clones 

displaying the desired specificity were obtained. 

High-affinity tetanus toxin neutralizing scFv maybe 

act as a therapeutic agent for alleviating the 

symptoms of tetanus toxin in infected individuals. 

We have constructed a panel of tetanus toxin-

neutralizing antibodies, including single-chain 

variable fragments (scFvs). The engendered panel 

of anti-tetanus scFvs compete with the cellular 

receptor for tetanus binding. Protection against 

tetanus toxin challenge in a mice model correlated 

strongly with affinity, with the highest-affinity 

antibody. 

Methods 
Engineering and Construction of phage 

Antibody library  

For this research, we applied the cloning and phage 

display system of previously constructed, which 

was quite satisfactory (24). To produce phage-scFv 

particles, 50 mL of E. coli TG1 transformants were 

cultured in 2xYT containing 100 mg/mL ampicillin 

and 1% glucose, shaking at 37ᵒC. At a culture 

density of OD600nm=0.5, 1012 pfu of M13KO7 

helper phage were added to the bacteria and left at 

37ᵒC with no shaking for 30 min followed by gentle 

shaking at 200 rpm for a further 30 min at 37C. The 

culture was then centrifuged and cell pellets were 

re-suspended in 50 mL of 2xTY containing 

50 mg/mL kanamycin and 100 mg/mL ampicillin 

and cultured overnight at 30ᵒC with shaking at 

250 rpm. The culture supernatant was centrifuged 

and 1:5 volume of ice-cold 20% PEG-6000 

containing 2.5 M NaCl was added and incubated on 

ice for at least 2 h to precipitate the phage particles, 

which were collected by centrifugation at 20,000 g 

for 2 h at 4ᵒC. The phage was stored at -80ᵒC in 

PBS containing 10% glycerol. Infective titers of 

phages-scFv were determined using plaque count 

assay. TG1 grown to mid-log phase in 2xYT 

medium was infected for 30 min at 37ᵒC with a 

serial dilution of the phage. The samples were 

spread on 2xYT plates containing 50 mg/mL 

kanamycin and incubated overnight at 37ᵒC. The 

number of plaques was used to calculate the phage 

titers. 

Screening of phage antibody library 

Selection of phage particles displaying specific 

scFv fragments was performed on Immuno 96 

MicroWellPlates (Nunc, Copenhagen, Denmark). 

TeNT used in this study was obtained from Razi 

Institute for Serums and Vaccines (Karaj, Iran). For 

the first panning round, 10 mg TeNT per well in 

100 mL PBS were coated in the microplates 

overnight at 4ᵒC. For more stringent conditions in 

the second and third rounds of panning 1 and 

0.1 mg TeNT per well were coated respectively. 

Following blocking with 5% (w/v) skim milk 

powder in PBS (5% MPBS), a library containing 

1012 phage particles was added and the microplate 

was incubated for 2 h at room temperature. Non-

bound phages were eliminated by washing 15 times 

with PBS containing 0.1% Tween-20 (PBST), 

followed by 15 times washing with PBS. The bound 

phages were eluted by incubation with 50 mL of 1 

mg/mL trypsin for 15 min. The second elution was 

followed by adding 50 mL of 50 mM glycine-HCl 

(pH 2.2) for 15 min at room temperature. Eluted 

phages of each step were used to infect 

exponentially growth of E. coli TG1 cells by 

incubating for 30 min at 37ᵒC. Infected cells were 

spread on 2xYT plate containing ampicillin 

(100 mg/mL) and glucose (1% w/v); the plate was 

incubated overnight at 37ᵒC. Individual phage-

infected clones were picked and grown for the 

production of phagemid particles. The culture was 

rescued using M13KO7 helper phage (Invitrogen, 
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Waltham, MA). Rescued phage particles were used 

to initiate another two subsequent rounds of 

selection using a similar procedure.  

Production of soluble scFv antibodies 

The selected scFv-phage was inoculated into the E. 

coli ER2738 non-suppressor strain. Transfected E. 

coli cells carrying the phagemid encoding the scFv 

antibody were grown in 2 mL of 2xYT medium 

containing ampicillin (100 mg/mL) and glucose 

(1% w/v) at 37ᵒC overnight. The overnight culture 

was used to inoculate 250 mL glucose-free 2XYT 

medium at 37ᵒC and 250 rpm until the OD600 nm 

reached 0.5. The scFv expression was induced by 1 

mM isopropyl b-D-1-thiogalactopyranoside (IPTG) 

for 7 h at 30ᵒC and 250 rpm. Cells were centrifuged 

and sonicated for scFv extraction. Purification of 

scFv fragments was performed using immobilized 

metal affinity chromatography (IMAC) under 

native conditions. All purified proteins were 

analyzed by reducing 15% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) 

followed by staining with Coomassie R-250. 

Western blot analysis was used to confirm the 

presence of His-tagged proteins at the correct 

molecular weight by anti-His-tag monoclonal 

antibody. 

Neutralization of the tetanus toxin effect by the 

soluble scFvs 

To evaluate the effect of scFvs on the lethality 

induced by tetanus toxin, two S.C LD50 of Tetanus 

toxin (10 ng) were preincubated with various 

concentrations of each scFv and injected into 22 g 

BALB/c mice. The mortality was followed every 24 

h during 14 days and the results are expressed as the 

rate of survival (hours) of mice 24 h after the 

Tetanus Toxin/ScFv injection.  

Results 

Engineering of anti-tetanus ScFv antibodies  

The heavy-chain (VH) and light-chain (VL) genes 

of antibodies were isolated by RT-PCR. Overlap 

extension PCR was used to produce 750 bp scFv 

gene fragments, with a sequence encoding the 

(Gly4Ser) 4 linker inserted between the C termini of 

the light chain sequences and the N termini of the 

heavy-chain sequences. The scFv genes were fused 

to the pIII protein in the vector Pcomb3x for display 

in a filamentous bacteriophage (Figure 1), and 

clones expressing the active protein were identified 

by phage enzyme-linked immunosorbent assay 

(ELISA). After expression and preliminary 

characterization of the scFv antibodies, 15 clones 

were entered to further studies (Figure 2a and 2b). 

 
Figure 1. SDS-PAGE analysis for detecting pIII-scFv 

in lysates of scfv-positive ER2738 E. coli clones. 

Clones 3 and 8, produced pIII-scFv shown as a band at 

53 kDa (arrows). Lane M, standard protein marker 

(value indicated at the left, in kilodaltons) 

Neutralization of the lethal potency of Tetanus 

Toxin 

Ten µg of the selected scFvs were incubated with 

80 ng concentration of Tetanus toxin, and the 

mixture was then injected into mice. Some of the 

scFvs studied showed a neutralizing activity. 

However, the protection observed was different 

from one scFv to another. Indeed, scFvs 8 and 13 

gave better protection than other scFvs (Table 1). 

The in vivo assay showed that the scFvs are specific 

for tetanus toxin. 

Neutralization of the lethal potency of CTX 

Different concentration of scFv1, scFv6, and scFv8 

were incubated with a ®xed concentration of CTX, 

and the mixture was then injected to mice. All the 

scFvs studied show a neutralizing activity.  

Tetanus Toxin (two s.c. LD50) was incubated with 

a fixed amount of each scFv (100 µg) as indicated 

in Materials and Methods. The mixture was injected 

into BALB/c mice and the mortality was followed 

every 24 hours. The results are expressed as the 

number of live mice 24h after the injection of the 

mixture. 
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Figure 2 a. SDS-PAGE analysis for detecting scFv in 

lysates of scfv-positive ER2738 E. coli clones. Clones 3, 

8, 13, 21, 23 and 23 produced scFv shown as double 

bands at *28–35 kDa (arrows). Lane M, standard protein 

marker (value indicated at the left, in kilodaltons). 

Figure 2b. Western blot analysis for detecting scFv in 

lysates of scfv-positive ER2738 E. coli clones detected 

with an anti-His tag antibody. Lane M, molecular mass 

marker (value indicated at the left, in kilodaltons). Lane 

ScFv, shown as double bands at 28–35 kDa (arrows). 

 

Table 1. Effect of scFv on the lethality induced by Tetanus Toxin 

Lifetime (Hour) Mice Numbers Injected Mixture 

24 3/3 ScFv  3 

56 3/3 ScFv  8 

30 2/2 ScFv  12 

140 3/3 ScFv  13 

24 2/2 ScFv  14 

24 2/2 ScFv  15 

24 2/2 ScFv  16 

30 2/2 ScFv  17 

30 2/2 ScFv  18 

24 2/2 ScFv  19 

30 2/2 ScFv  20 

24 2/2 ScFv  22 

36 2/2 ScFv  23 

24 2/2 ScFv 24 

24 3/3 Tetanus Toxin 

>200 3/3 PBS 

 

Discussion 

There is a growing demand for engineered proteins 

for therapeutic and diagnostic applications (25-28). 

Phage display technology has been successfully 

applied to produce antibody fragments that 

specifically bind to given antigens (29-32). In this 

study, we assessed the neutralizing ability of the 

previously constructed and screened phage antibody 
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scFvs fragments library(24). To construct an 

antibody fragments library, the total mRNA was 

used from PBMCs of several donors who had 

received the booster tetanus vaccine. It has been 

shown that after boosting the affinity and specificity 

of antibodies are developed. We engineered the 

HuscFv format because the small size of scFv is 

well expressed in E. coli and typically high. (12). 

However, ScFv has rapid plasma clearance but 

exhibits high neutralizing ability.  

The previous results obtained from the TeNT 

binding inhibition assay implied that the HuscFv 

binds directly to the receptor-binding motif (24). 

Therefore, it can be deduced that selected HuscFv 

against heavy chain can be considered a useful and 

efficient approach in tetanus management. By the 

current study, the in vivo neutralizing efficacy of 

selected scFvs was assessed. Further investigations 

should be applied to assess a cocktail composed of 

scfv antibodies that recognize different epitopes of 

TeNT. To obtain scFv with greater affinities, we 

need to utilize mutagenesis by using error-prone 

PCR. It seems that our selected HuscFv antibodies 

could have been considered as a candidate to enroll 

in the other complementary studies against TeNT or 

an emerging diagnostic tool. 

Conclusion 

These selected ScFvs can be considered as a 

possible option to substitute the human tetanus 

immunoglobulin (HTIG) which is extensively 

current immunotherapy for tetanus patients. Taken 

together, our results suggest that the use of human 

tetanus scFvs may lead to a less aggressive passive 

immune therapy against tetanus. 
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