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Abstract  

Acute lymphoblastic leukemia(ALL) is due to early stage arrest of lymphoblast development. The 
translocation of Philadelphia (Ph) chromosome occurs as a result of the BCR-ABL fusion gene, which 
constitutively produced activated tyrosine kinase. This gene fusion is an important indicator for prognosis in ALL 
and is associated with poor overall survival and remission duration. BCR-ABL could interfere in establishment of 
ALL.  Therefore, in this study, we will try to investigate most pathological aspects involved in BCR-ABL fusion. 
Strategies for genetic alterations in B-ALL pathogenesis are discussed. Then, the main cytogenetic changes and 
genetic subtypes for ALL are highlighted. Moreover, intermediate reactions between cancer stem cells (CSC) 
related to ALL, its niche and microenvironment is discussed. The main objective in this review is to understand the 
principle prognosis in ALL to introduce new approaches and treatment alternatives. 
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Introduction 
In 1960, Nowell and Hungerford found a 

small abnormal chromosome belonging to G group 
known as Philadelphia chromosome (Ph) in seven 
patients with CML. In 1973, combined banding 
techniques using quinacrine fluorescence and Giemsa 
staining showed translocation between chromosomes 
9 and 22 t(9;22) (q34;q11) in Ph(1) . In early 1980s, 
a number of genes were mapped, including ABL 1 
(v-abl Abelson murine leukemia viral oncogene 
homolog 1) on chromosome 9, which was mapped 
using somatic cell hybrids(2). Dekein et al 

demonstrated that ABL1 gene on chromosome 9 was 
translocated to chromosome 9 and lead to 
development of Ph chromosome. Translocation of 
ABL1 gene resulted in an abnormal protein with 
tyrosine kinase activity via formation of a chimeric 
gene (3). BCR-ABL1 fusion protein shows increased 
tyrosine kinase activity compared to ABL1 145 KD 
(4). The chromosomal rearrangement in ABL1 gene 
and its related fusion ; BCR-ABL1 is predominantly 
associated with CML and B-acute lymphoblastic 
leukemia (B-ALL). Currently, other six genes 
including 1 (4) ETV6-ABL 1 (5), ZM1Z1-ABL 1 (6, 
7), EML 1-ABL 1 (8), NUP 214-ABL 1 (9), RCSD 1-
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ABL 1 (10-12) and SFPQ-ABL 1 (13, 14) that are 
able to fuse with ABL1 have been recognized,.  
ABL1 kinase region is conserved and located in N-
terminal region of all chimeric proteins, and includes 
coiled-coil or helix-loop-helix regions (15). 
Screening for chimeric ABL1 genes could be 
considered in ALL patients, especially in those with 
T-ALL, since ABL1 regulates the evolution of T 
lymphocytes, and plays a pivotal role in the process 
of their cytoskeleton deformation (16). Although 
BCR fusion gene has been diagnosed more than 25 
years ago, a number of new partner genes for ABL1 
have been recently described (17-20). Using 
cryptogenic assay, this translocation is diagnosed in 
more than 95% of patients, while using FISH, the 
remaining 5% of fusion genes located on 
chromosome 9 or 22 are apparently normal. 
Moreover, translocation occurs in 25% and 5% of 
adults and children with ALL, respectively (21). 
Approximately 75% of ALL children undergo a 
chromosomal relapse change, which is detected by 
karyotype, FISH, and molecular techniques. There is 
common occurrence of genetic changes with reduced 
favorable outcomes and modification of adverse 
results such as BCR-ABL1along with increase in age 
(22). Cytogenetic tests, FISH and PCR are 
simultaneously used in combination with diagnosis 
and monitoring of patients. In diagnosis, the subtype 
of fusion that depends on BCR breakpoint is 
important to follow the fusion in patient samples 
(23).  Furthermore, FISH and SNP array have 
detected CRFL2 (cytokine receptor gene) 
rearrangement in 7% of ALL children, 5% of whom 
are associated with Down syndrome (DS-ALL) (23-
25). With the exception of tyrosine kinase inhibitors 
(TKIs) such as imatinib, current therapies are not 
specific for genetic alterations, and limit the progress 
of leukemia via short- and/or long-term toxicity. 
Measurement of low or minimal residual disease 
(MRD) using molecular techniques is the gold-
standard method that detects response to therapy with 
high sensitivity compared to other routine techniques 
(26, 27).  
Introduction to ALL 

B-lymphoblastic leukemia is due to early stage 
arrest of B-cell development (Figure1). Age and 
karyotype abnormalities are substantially correlated 

with prognosis, and can be used to classify patients to 
standard-and high-risk (28, 29). Ph+-ALL is an 
aggressive (high-risk) form of acute leukemia that 
mainly inflicts older adults. In all Ph+-ALL leukemic 
cells, there is reciprocal translocation known as t 
(9;22), which results in a fusion gene (BCR-ABL) in 
breakpoint e1a2, generating a 190KD protein with 
tyrosine kinase activity . This translocation changes 
several signaling pathways and  augment the growth 
and proliferation of tumor (30). In adults with ALL, 
Ph chromosome is the most common cytogenetic 
abnormality with 20-30% incidence in ALL, and 50% 
of  patients have more than 50 years (31). Several 
studies demonstrated the importance of such adverse 
karyotypes before development of tyrosine kinase 
inhibitors (TKIs), when long-term disease free 
survival (DFS) was rarely higher than 2% without 
bone marrow transplantation (32-34). Different 
breakpoints in BCR on chromosome 22 would lead to 
different proteins with various sizes, including 190 KD 
(P190) protein especially observed in Ph+-ALL, 210 
KD (P210) protein with occurrence of 20-40% in Ph+-
ALL and almost all cases of chronic myeloid leukemia 
(CML) (35). Heterogeneity of karyotype is also 
detected in Ph+-ALL, including monosomy 7, a high 
number of Ph chromosomes, t(9;22) (+der(22)), 
trisomy 8. Deletion of 9P is the most frequent 
abnormality (36, 37) in this regard. Several studies 
have shown that the three above-mentioned anomalies 
are associated with a poor prognosis. Approximately 
15% of Ph+-ALL patients would have favorable 
conditions if they are hyperdiploid with 51-67 
chromosomes (34, 37). 

Indeed, all patients with B-ALL have immune 
phenotype anomalies which routinely detected by flow 
cytometric analysis. These imunophenotypes are often 
related to specific chromosomal abnormalities and can 
affect prognosis (38, 39).  Ph+-ALL is substantially 
associated with a high expression of myeloid antigens, 
including CD13 (alanine amino-peptidase), CD33 
(membrane receptor myeloid linage), CD66c 
(Carcinoma embryonic adhesion antigen, related to 
cell adhesion molecule) and CD25 (receptor α chain of 
IL-2). Previous studies also demonstrated the 
importance of gene rearrangement related to 
phenotypic abnormalities for Ph+-ALL compared to 
Ph—ALL(40-43). For instance, MLL would be related 
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to deficiency or/and absence of CD10 (membrane 
metalloprotease) and CD15 (fucosyl-3- N-acetyl 
amine) expression (44). Three TEL and AML-1 
variants in fusion gene of (TEL-AML1) lead to high 
expression of CD13 and CD3 and partly CD5. Ig 
amplifiers of E2A, which binds E2/E47, and homo 
box of pre-B leukemia (PBX-1) in gene fusion (E2A-
PBX1), would rarely express CD13 and CD33 (45). 
The majority of reports implicate imunophenotypic, 
karyotypic and molecular subtypes of Ph+-ALL 
before chemotherapy with severe TKIs. 
Flow cytometric phenotyping  

ALL-wide panel includes CD1 (glycoprotein 
expressed on membrane of Ag presenting cells), CD4 
(membrane glycoprotein), CD8 (trans-membrane 
glycoprotein), cytoplasmic CD22 (trans-membrane 
protein), CD79a (Igα), cytoplasmic IgM, membrane 
λ and K, CD25, CD58 (lymphocyte function-
associated antigen 3), CD66c and CD81 (26 kDa cell 
surface protein, target of the anti-proliferative 
antibody-1 (TAPA-1)). Moreover, MRD panel 
consists of CD10+, CD15+, CD13+, CD19+, 
CD20+, CD22+, CD25+, CD33+, CD38+, CD38+, 
CD58+ and CD81+.  Expression of CD10, CD20, 
CD34, and cytoplasmic IgM on lymphocytes is 
defined as negative (less expression of 20 %), 
moderate (expression of 20-75%) or positive (75%) 

(46). 
Genetic and molecular makeup of ALL 

Alteration of lymphoid transcription factor of 
IKZF1 (also known as IKAROS) is a therapeutic 
strategy for ALL therapy (47, 48). Tyrosine kinase 
signaling in B-ALL, including CRLF2 (cytokine 
receptor-like factor 2), ABL1 rearrangement, JAK2, 
PDGFRB, and mutation in JAK2/JAK1 is treated 
using tyrosine kinase inhibitors (49-53). Novel 
mutations in acute T-ALL are mainly including  
RUNX1 and ETV6 which are tyrosine kinase and 
epigenetic regulatory, respectively (54, 55). 75% of 
children ALL types result from a relapse in 
chromosomal change detected by FISH and molecular 
techniques (Figure2) (56). 
The genetic landscape in ALL 

Although ALL would be treated in over 80% of 
children, relapsed ALL is the main reason of death in 
them.T-ALL is characterized by mutations of notch1 
and rearrangement of transcription factors such as 
TLX1 (HOX11), TLX3 (HOX11L2), LYL1, TAL1, 
and MLL. However, all of these chromosomal 
rearrangements are insufficient to develop leukemia. 
The majority of involved genes play a role in encoding 
the proteins related to lymphoid development (PAX5, 
IKZF1, EBF1, and LMO2), cell cycle regulators of 
tumor suppression (CDKN2B/CDKN2A, PTEN, 

 
Fig. 1. Proposed model for genetic alterations in B-ALL pathogenesis 
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RB1), lymphoid signaling (CD200, BTLA, TOX, and 
glucocorticoid receptor) and transcription mediators 
as well as combined activities (ERG, ETV6, 
TBL1XR1).Researchers have managed to show the 
interaction between CSCs and niche in tumor 
development (57, 58). 
Introduction to molecular function of P230-P210-
P190 

Groffen et al. identified a breakpoint on 
chromosome 22 located in 5.8 Kb region known as 
BCR breakpoint (59). BCR protein has a coiled-coil 
domain and a tyrosine kinase residue in GRB2-
bilding site(60). BCR increases dimerization of 
BCR-ABL and phosphorylates two adjacent onco-
proteins on tyrosine in activation loops(61). BCR-
ABL protein leads to undesirable proliferation of 
cells and decreased apoptosis (62-64). ABL1 gene 
encompasses a region of 230 Kb in 9p34 band 
containing the first alternative exons 5’ (1a, 1b) and 
10 homology exon that count from 2 to 10 (65). The 
other binding with 1a and 1b exons would express a 
6- or 7-kb mRNA with 1143 and 1130 proteins. 
ABL1 Protein has three SRC homology domains, 
including SH1, SH2, and SH3. SH1 has tyrosine 
kinase activity, and is predominant for 
transformation of oncogenic form. SH2 and SH3 are 

involved in protein-protein interactions, and mediate 
the activation of tyrosine kinase for signal transduction 
(15). Therefore, these two domains have the main role 
in regulating and inhibiting the activation of ABL1 
(66, 67) .Moreover, ABL1 protein has three cores with 
nuclear signaling, three DNA-banding regions and an 
F-actin-binding site (68, 69). ABL1 protein plays a 
role in binding to actin and mobilization, adhesion, 
receptor endocytosis, autophagy, and facilitating repair 
after average DNA damage; however, it does not 
interfere in apoptosis following severe apoptosis (16). 
BCR-ABL1 fusion gene 

Philadelphia chromosome (Ph) results in t 
(9;22) (q34;q11), which fuses 5’ region of BCR gene 
to 3’ region of ABL1 gene and forms  a fusion gene 
known as BCR-ABL1 (Figure 3) (70). Chromosomal 
breakpoint often occurs between exons 1 and 2 in 
ABL1 gene (a2). However, a few studies have been 
reported from breakpoints between exons 2 and 3 (a3) 
.Breakpoints are observed in three separate points of 
BCR gene, including between exons 13 and 14 (e13a2, 
previously known as b2a2), exons 14 and 15 (e14a2, 
previously known as b3a2), implicating major 
breakpoint region (M-BCR) that transcripts 8.5 kb-
mRNA translating p210 (71) (Figure 3, 1B, 1A). 
Moreover, chromosomal breakpoint can be between 

 
Fig. 2. Occurrence of cytogenetic subtypes in children ALL 
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BCR gene exons; 1 and 2 (previously known as 
e1a2). This breakpoint region is known as minor 
breakpoint region (m-BCR) , which transcripts 7kb-
mRNA and p190 (72)(Figure 3, 1c). P210 (major 
breakpoint in M-BCR) is mainly found in CML, but 
p190 (minor breakpoint in m-BCR) is expressed in 
50% and 80% cases of ph+ ALL in adults  and 
children, respectively (73). Breakpoints occurring in 
micro breakpoint (µ-BCR) lead to binding between 
exon 19 of BCR gene and ABL1 gene exon 2 (e19a2 
or c3a2), and would produce P230 (Figure 3) (74, 
75). The first report on E19a2 transcript was in CNL 
(chronic neutrophilic leukemia), which accounts for 
about 1% of classic Ph+ CML cases (75). Other 
breakpoints and bindings resulting in functional 
BCR-ABL1 rarely occur, and include e6a2 and e8a2 
(76-78). E6a2 transcript has no specific phenotype 
and has been seen in CML(79), CMML(80) ,T-ALL  

(81), acute basophilic leukemia (82)  .  
BCR-ABL1 like ALL 

The majority of 15% of children and/or patients 
with B-progenitor ALL have well-known 
chromosomal rearrangement, but often show the 
expression of genes like BCR-ABL 1+, and have 
mutation or deletion in IKZF1, which is common in 
BCR-ABL1 ALL (83). The disease is most common in 
teenagers and young adults, and has an unfavorable 
prognosis with survival rate of 62% compared to 85% 
for cases lacking BCR-ABL1. More than half of the 
BCR-ABL like cases are due to CRF2 rearrangement 
and JAK1/2 mutations (84). This disease is 
successfully treated with TKIs. However, there is a 
high risk for relapse and treatment failure(53). 
Treatment of Philadelphia chromosome in ALL 

Historically, chemotherapy alone is associated 
with a poor prognosis  with a median survival of 8 

 
Fig. 3. Schematic view of BCR gene: A-D: Fusion gene depends on specific breakpoint in BCR 

 Archives of Medical Laboratory Sciences 



The Role of BCR-ABL P190 in Diagnosis and Prognosis of ALL patients                                                                   Tari K et al.                               

123 

months(85, 86). Despite modern treatment with 
allogenic hematopoietic stem cell (allo-HSCT) and 
tyrosine kinase inhibitors (TKIs), resistance to TKIs 
and its prevalence in elderly patients are still a major 
problem. Recently, single nucleotide polymorphism 
(SNP) detects changes in transcription factor gene of 
IKZF1 (IKAROS)(87-89). 
Diagnosis 

Early investigation for ALL patients should be 
included in patient’s clinical history and physical 
analysis with special attention to evidence of CNS or 
other extranodal involvements. HLA typing of the 
patient for transplant should be performed at 
diagnosis. Laboratory evaluation includes assessment 
of BM aspiration using conventional cytogenetic and 
FISH with reverse transcriptase polymerase chain 
reaction (RT-PCR) for P230 and P190 transcriptions 
to identify BCR-ABL1. The numbers of full 
transcriptions of BCR-ABL need to be assayed with 
gene housekeeping measurements. GUS or ABL is 
analyzed using real-time quantitative PCR (RQ-
PCR). In vitro changes may occur, as p190 has not 
been standardized yet(90).  
Remission induction in patients 

Yanda et al. reported 86% and 70% complete 
remission of disease and complete molecular 
remission in 80 patients with de novo Ph+ ALL, 
respectively (91).TKIs induces 90% complete 
remission as front-line of chemotherapy drugs. 
Imatinib was the first TKIS investigated in Ph+ ALL. 
Based on ALL center in Germany (GMALL), 
combination of imatinib and chemotherapy resulted 
in 95% complete remission and 2-year overall 
survival of 36% vs 43%, which were statistically non 
significant (92).  

Desatinib: This was the second YKI 
produced, which inhibits the family kinases of SRC 
and ABL, and is 325 times more potent compared to 
Imatinib. This drug inhibits SRC kinase signaling 
and mutated ABL kinase and presents a  promising 
long-term efficiency on patients(93-95). In clinical 
trial II using a combination of desatinib and hyper-
CAVAD conducted by Anderson cancer center 
(MDACC), 64% have 2-year survival  and in 35 
previously untreated patients with Ph+ ALL the 
frequency of event-free survival (EFS) was 57%  (96, 
97). 

Nilotinib: In combination with   severe 
chemotherapy, this drug would induce approximately 
90% complete remission, 57% complete molecular 
remission as well as 71.1%, 49.9% and 62.2% 2-year 
relapse free survival, RFS, and OS in de novo Ph+ 
ALL patients, respectively. 
Therapy after disease remission and allo-HSCT 

Despite a high rate of TKIs-induced remission, 
this remission is temporary, and reoccurrence would 
be observed in the majority of patients. The main 
target of therapy after disease remission is abrogation 
of minimal residual disease (MRD), which is a main 
reason for disease relapse. Allo-HSCT substantially 
increase OS in both pre-TKIs and post-TKIs, and is a 
proper approach in Ph+ALL patients because of 
targeting the majority of leukemia cell by intense 
chemotherapy and graft versus leukemia (GVL) (98).  
TKI after transplantation  

The unsolved question is how long and in what 
conditions TKIs required after allo-HSCT for 
treatment are. In a long-term analysis by the above-
mentioned center, 113 Ph+ALL patients were 
monitored after the first and second CR or active 
disease. TKI-treatment before allo-HSCT or post-allo 
HSCT had no significant effect on the outcome of 
transplantation (99).  
BCR-ABL mutations 

A prominent and important event in Ph+ALL is 
therapy resistance for all or advanced TKIs (100). 
Point mutations in ABL-Kinase domain (ABL-KD) is 
a common reason for therapy resistance to imatinib, 
and involves activating loop (A-loop) as well as 
catalytic domain and ATP binding pocket (P-loop). 
Moreover, involvement of other signaling pathways is 
related to SRC family kinase due to mutation of SH2 
or SH3 (101).  
The role of MRD monitoring 

Historically, therapy response is determined by 
morphologic criteria followed by bone marrow 
analyses indicating less than 5% blasts in blood. 
Medical research council (MRC) has showed that 
complete disease remission for these patients is 45% 
vs 5% in individual not having the mentioned criteria 
(102). Patients with complete morphologic remission 
have mainly leukemic cells known as MRD. 
Determining MRD is considered as the potential 
independent prognosis for EFS and OS (103). 
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Detecting fusion transcription of BCR-ABL by RQ-
PCR has a high sensitivity (≥6-10); however, 
regulating the proper time and interpretation of 
results remain uncertain. Furthermore, disagreement 
of the standard methodology at least for P190 has 
resulted in different reports. However, consistent 
effort has been dedicated to create better 
comparability of PCR results. Therapy course of Pre-
TKI indicates a proper correlation between MRD 
level after induction and/or reinforcement treatment 
and the outcome of Ph+-ALL (104-106), However, 
opposite results in different time points have been 
reported to measure MRD (107). Following the 
introduction of TKIs, the level of BCR-ABL 
transcription seems to be associated with response 
(108); however, favorable response has not been 
determined yet. Lee et al showed that one to three 
logarithmic change in transcription level of ABL 
after 4 weeks therapy with Imatinib could 
prognosticate a high level of DFS and OS (4-year 
DFS 82.1% vs 41.7%, and 82.3% OS vs 48.6%) 
(109). Similarly, GRALL AFRO3 has indicated that 
imatinib improves molecular reoccurrence before 
transplantation that would cause a better 
transplantation outcome (110). In contrast, Based on 
the Yanda et al’study. the rapid molecular remission 
and its outcome are not associated  with imatinib-
basic chemotherapy(100, 101) . Disease relapse risk 
originates from pre-existing sub clones with point 
mutations in BCR-ABL kinase domain (111). 
However, they have not indicated a significant 
correlation between positive MRD and reoccurrence 
in patients treated with imatinib-based chemotherapy 
. Wassmann et a.l reported imatinib-induced 
molecular remission in MRD+ patients after allo-
HSCT . MRD+ patients predict a definite recurrence 
after 6-10 weeks therapy with  imatinib. Therefore,  
timely intervention is suggested in remission of 
MRD+ patients despite common evidence from 
MRD monitoring (112).  
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