
1

Research Paper
Investigating the Mechanism of Arsenic-induced 
Ferroptosis in the Skin

Mehdi Koushki1 , Nasrin Amiri-Dashatan2, 3 , Mitra Rezaei4, 5 , Fatemeh Montazer6 , Abdolrahim Nikzamir7 , Reza Vafaee8 , Vahid 
Mansouri9 , Masoumeh Farahani10* 

1. Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
2. Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. 
3. Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
4. Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5. Clinical Tuberculosis and Epidemiology Research Center. National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti 
University of Medical Sciences, Tehran, Iran.
6. Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
7. Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Faculty of Medicine, 
Shahid Beheshti University of Medical Sciences, Tehran, Iran.
8. Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
9. Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
10. Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

* Corresponding Author: 
Masoumeh Farahani, PhD.
Address: Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tel: +98 (21) 22 74 15 07
E-mail: mfarahani2005@gmail.com, mfarahani@sbmu.ac.ir 

Background: Ferroptosis, an oxidative and iron-dependent cell death, is a new type of 
regulated cell death. There are few studies on the mechanisms of ferroptosis in the skin and 
related diseases. Arsenic is shown to induce ferroptosis cell death. This study aimed to decipher 
the relationship between arsenic exposure and ferroptosis cell death in the skin. 

Methods: Arsenic-gene interactions were obtained. Then, skin-specific arsenic-gene 
interactions were screened. Ferroptosis-related genes were identified. Analysis of functional 
and biological interactions was performed to identify possible mechanisms. 

Results: The arsenic-gene interactions and the ferroptosis-related genes showed an overlap 
of 59 genes. Functional enrichment, protein-protein interaction, and transcription factor (TF)/
miRNA target gene interaction analyses were used to look into the mechanism of arsenic-
induced ferroptosis in the skin. ACTB, CTNNB1, HSPA8, SRC, RACK1, CD44, and SQSTM1 
were identified as key proteins. Gene ontology analysis of these proteins indicated the 
mitochondrial morphology and functionality changes following arsenic-induced ferroptosis 
in the skin. HIF1A and SP1 TFs regulate a large number of genes compared to other TFs. Ten 
miRNAs with high interaction with ferroptosis-associated genes were identified. 

Conclusion: This work investigated the mechanism of arsenic-induced ferroptosis in the 
skin and identified key genes and regulators, and functional analysis highlighted the role of 
mitochondria in this skin exposure.
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1. Introduction

rsenic is a natural metalloid that is widely 
found in food, soil, and water [1]. There is 
increasing evidence that arsenic is tightly 
linked to adverse health effects and signif-
icant risks for several diseases, including 

various cancers, such as skin and lung cancer, cutaneous 
diseases, cardiovascular disease, and type 2 diabetes [2]. 
In toxic doses, arsenic can lead to both acute and chron-
ic adverse health effects on the human body. Skin and 
neurological changes are the earliest and most common 
manifestations of toxicity with arsenic since the skin is 
one of the most important defensive organs of the body 
and protects against endogenous and exogenous stresses. 
Skin manifestations due to arsenic include pigmentary 
changes, arsenic keratosis, and skin malignancies [3]. Ar-
senic mediates its toxicity by inducing oxidative stress, 
causing immune disruption, damaging DNA repair, and 
disrupting signaling pathways, which may decipher the 
complex disease manifestations found in arsenicosis [4]. 
Arsenic-induced skin disorders have been increasingly 
investigated, but the underlying mechanism is not com-
pletely elucidated. Cell death is an important event that 
plays a key role in maintaining skin homeostasis. In ad-
dition, dysregulation of cell death is increasingly defined 
as contributing to skin inflammation [5]. Excessive or 
poor apoptosis contributes to many disease processes, 
and several skin diseases can result from cell apoptosis 
both on a limited or large scale [6]. Ferroptosis is defined 
as an iron-dependent form of programmed cell death by 
the accumulation of lipid peroxidation that is different 
from apoptosis, necrosis, and autophagy [7]. Some heavy 
metals, such as arsenic are able to induce ferroptosis cell 
death [8]. Considerable research shows that ferroptosis 
plays a key role in diseases. In this regard, several studies 
have also confirmed the relationship between ferroptosis 
with various skin disorders [9]. Vast et al. reported that 
keratinocyte death via ferroptosis initiates skin inflam-
mation after UVB exposure. Recently, it has been shown 
that ferroptosis activation owing to iron overload may 
be involved in the formation of skin lesions in psoriasis 
vulgaris [10]. Therefore, it can be assumed that ferropto-
sis is involved in skin disease caused by arsenic. Based 
on our knowledge, this study is the first comprehensive 
investigation of the underlying mechanisms involved in 
arsenic-induced ferroptosis in the skin, providing new 
insight for future ferroptosis research.

2. Materials and Methods

Data collection

Initially, arsenic-gene interactions were obtained 
through the CTD and STITCH databases [11, 12]. Sub-
sequently, a skin tissue expression study of the arsenic-
gene interactions was performed using the UP_TISSUE 
enrichment analysis available in the DAVID database to 
screen potential arsenic-gene relationships in the skin 
(P<0.05) [13]. The UP_TISSUE enrichment analysis ex-
hibits over-expressed genes for various human tissues. 
In addition, ferroptosis-related genes were obtained 
through the FerrDb and GeneCards databases [14, 15]. 
Finally, the ferroptosis-related genes were intersected 
with the skin-specific arsenic-responsive genes to screen 
arsenic-induced ferroptosis-related genes in the skin.

Functional enrichment analyses of the ferroptosis-
related genes

Gene ontology (GO) biological processes and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses were performed by the DAVID functional an-
notation tool [13, 16]. A P<0.05 was selected for func-
tional enrichment analyses.

Protein-protein interaction network construction

Protein-protein interactions (PPIs) of the ferroptosis-
related genes were extracted from the STRING soft-
ware, version 12 database using the default confidence 
score (≥0.400) [17] to construct arsenic-induced ferrop-
tosis-related subnetwork in the skin by the Cytoscape 
software, version [18]. The plug-in network analyzer 
was used for topological analysis of the PPI network. 
GeneMANIA was employed to analyze the hub genes in 
the arsenic-induced ferroptosis-related subnetwork [19]. 

Identification of miRNA/TF-gene interactions

The experimentally validated miRNA-target interac-
tions were retrieved from miRTarBase [20]. This data-
base contains more than 360000 miRNA-target gene 
interactions, which are extracted by manual review of 
relevant literature. Also, the TF–target gene relation-
ships were obtained from transcriptional regulatory 
relationships unraveled by sentence-based text mining 
(TRRUST) software, version 2 to predict the transcrip-
tional regulatory interactions [21]. This database con-
tains 8,444 TF-target regulatory interactions of 800 hu-
man transcription factors (TFs) that have been extracted 
from the PubMed articles.

A
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3. Results

The purpose of this study was to investigate the mecha-
nism of arsenic-induced ferroptosis in the skin. We re-
trieved the 5088 arsenic-gene interactions from CTD 
and STITCH databases. The 556 skin-specific arsenic-
gene interactions were enriched by DAVID tissue ex-
pression analysis, considering the UP_TISSUE category 
using skin and keratinocyte significant terms. Based on 
the FerrDb and GeneCards databases, 2339 ferroptosis-
related genes were obtained. The lists of skin-specific ar-
senic-gene interactions and the ferroptosis-related genes 
provided an overlap of 59 genes (Figure 1). The lists 
were used for functional enrichment analysis (Table 1 
and Table 2). The gene ontology analysis results showed 
that the 59 genes were mainly enriched in negative reg-
ulation of the apoptotic process, positive regulation of 
the apoptotic process, negative regulation of transcrip-
tion, DNA-templated, apoptotic process, and positive 
regulation of transcription, DNA-templated. The KEGG 
pathway enrichment showed fluid shear stress and ath-
erosclerosis, necroptosis, Salmonella infection, Epstein-
Barr virus infection, and lipids and atherosclerosis as the 
top significant pathways. PPI network analysis revealed 
arsenic-induced ferroptosis-related subnetwork in the 
skin with 56 nodes and 237 edges (Figure 2). As shown 
in Table 3, the top ten degree and betweenness centrality 
values showed an overlap of seven nodes as hub-bottle-
neck proteins. The hub-bottleneck proteins were queried 
in GeneMANIA to create a PPI network and function 

analysis (Figure 3). Hub-bottleneck proteins illustrated 
the PPI network with physical interactions of 62.13%, 
co-expression of 35.01%, co-localization of 1.84%, path-
way of 0.55%, and prediction of 0.48%. Mitochondrial 
depolarization, the extrinsic component of the plasma 
membrane, cell-cell junction organization, regulation of 
mitochondrial membrane potential, regulation of mem-
brane depolarization, membrane microdomain, and the 
extrinsic component of the membrane were identified 
as the main function of hub-bottleneck proteins (FDR 
<0.05). The transcription factors HIF1A and SP1 were 
shown to target five and nine genes, respectively (Table 
4). They regulated a large number of genes compared 
to other TFs. Additionally, ten miRNAs with high inter-
action with ferroptosis-associated genes were identified 
(Table 5).

4. Discussion

Based on the World Health Organization (WHO) re-
ports, about 200 million people worldwide are exposed 
to arsenic in natural drinking water [22], which indicates 
that arsenic contamination is an important global public 
health problem. Chronic exposure to arsenic develops 
many potential skin diseases, including hyperkerato-
sis, hyperpigmentation, and various types of skin can-
cers [23]. Recent studies have shown that ferroptosis is 
closely associated with the occurrence of cutaneous dis-
eases [9]. Therefore, in this study, to identify key genes 
and molecular mechanisms associated with arsenic-in-

Table 1. Gene ontology enrichment of arsenic-induced ferroptosis-related genes (the top 10 terms are presented)

Term Genes P

negative regulation of apoptotic 
process DDB1, PRDX2, NPM1, SRC, SPHK1, ID1, CTNNB1, MIF, PSEN1, CD44, HSP90B1 0.000003

positive regulation of apoptotic 
process NR4A1, CDKN2A, SRC, ANKRD1, RACK1, CTNNB1, PSEN1, BID, SQSTM1 0.0000055

negative regulation of transcription, 
DNA-templated PARP10, HSPA8, PARP1, CDKN2A, SRC, ID1, ANKRD1, CTNNB1, ENO1, BMAL1 0.000057

apoptotic process DDB1, NR4A1, AHCYL1, PARP1, CDKN2A, IL1B, RACK1, PSEN1, BID, SQSTM1 0.000082

regulation of neurogenesis ANXA2, IL1B, CTNNB1, BMAL1 0.00023

positive regulation of transcription, 
DNA-templated NPM1, CDKN2A, SRC, IL1B, ANKRD1, CTNNB1, PSEN1, RUNX3, BMAL1, ACTB 0.00027

protein folding in endoplasmic 
reticulum PDIA3, P4HB, HSP90B1 0.00047

regulation of G1/S transition of 
mitotic cell cycle CDKN2A, PSME1, BID, ACTB 0.00056

cellular senescence MAPK9, NPM1, CDKN2A, MIF 0.00059

positive regulation of MAP kinase 
activity SRC, IL1B, MIF, PSEN1 0.0016
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duced ferroptosis in the skin, we first identified genes 
that overlapped between ferroptosis-related genes and 
skin arsenic-gene interactions. Then, the PPI network 
was constructed and seven hub bottlenecks were iden-
tified, which included ACTB, CTNNB1, HSPA8, and 
SRC (degree ≥20), RACK1, and CD44 (degree=18), and 
SQSTM1 (degree=17). Beta-actin (ACTB) is a cytoskel-
eton structural protein related to cell growth and migra-
tion and plays a main role in several human diseases. 
Actin filaments are one of the major elements of the 
cytoskeleton and contribute to TFRC pathway-mediated 
iron absorption [24]. It was also reported that arsenic 
induces a quick cell rounding and disruption of actin 
reorganization [25]. The CTNNB1 hub gene plays an im-
portant role in cellular adhesion. Recently, it found that 

transgenic mice expressing an activated beta-catenin are 
susceptible to developing skin tumors [26]. Also, Chang 
et al. reported that chronic exposure to arsenic can in-
duce neoplastic transformation, which may be associ-
ated with the β-catenin/c-Myc signaling pathway [27]. 
HSPA8 is another hub gene identified in this work, which 
is involved in various cellular processes. Heat shock pro-
teins (HSPs) are a group of stress proteins with protec-
tive effects that play a main regulatory role in several 
processes, including cellular homeostasis, cell prolifera-
tion and apoptosis, tumorigenesis and aging, and signal 
transduction. HSP70 family members might increase 
cellular resistance to the ferroptosis event [28]. It can be 
concluded that Hsp70 may be a graceful biomarker for 
arsenic exposure in humans. On the other hand, arsenic 

Koushki M, et al. Skin Exposure to Arsenic and Ferroptosis. IJMTFM. 2023; 13(4):E43485.

Table 2. KEGG pathway enrichment of arsenic-induced ferroptosis-related genes (the top 10 terms are presented)

Term Genes P

Fluid shear stress and atherosclerosis MAPK9, SRC, IL1B, KEAP1, CTNNB1, SQSTM1, ACTB, HSP90B1 0.0000087

Necroptosis MAPK9, PARP1, IL1B, BID, SQSTM1, FTL 0.0016

Salmonella infection MAPK9, TUBA1A, ANXA2, IL1B, CTNNB1, ACTB, HSP90B1 0.0021

Epstein-Barr virus infection PSMD8, PDIA3, MAPK9, BID, RUNX3, CD44 0.0046

Lipid and atherosclerosis HSPA8, MAPK9, SRC, IL1B, BID, HSP90B1 0.0059

Apoptosis MAPK9, TUBA1A, PARP1, BID, ACTB 0.0062

Measles HSPA8, MAPK9, IL1B, RACK1, BID 0.0067

Human cytomegalovirus infection PDIA3, CDKN2A, SRC, IL1B, CTNNB1, BID 0.0072

Biosynthesis of amino acids CTH, IDH2, PGK1, ENO1 0.0077

Shigellosis MAPK9, SRC, IL1B, SQSTM1, CD44, ACTB 0.01

Table 3. Hub-bottleneck proteins in arsenic-induced ferroptosis-related subnetwork

Gene Name Degree Betweenness Centrality Description

ACTB 34 0.22202673 Actin beta (β-Actin)

CTNNB1 27 0.12486442 β-catenin

HSPA8 23 0.07768253 Heat shock protein family A (Hsp70) member 8

SRC 20 0.04256659 SRC proto-oncogene, non-receptor tyrosine kinase

RACK1 18 0.08361953 Receptor for activated C kinase 1

CD44 18 0.06946211 CD44 molecule

SQSTM1 17 0.09565501 Sequestosome 1

Autumn 2023, Volume 13, Number 4
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Figure 1. A list of the 59 genes was obtained as arsenic-induced ferroptosis-related genes in the skin 

Koushki M, et al. Skin Exposure to Arsenic and Ferroptosis. IJMTFM. 2023; 13(4):E43485.

Table 4. Key TF-gene interactions

Key TF Description P List of Overlapped Genes

HIF1A
hypoxia inducible factor 1, al-
pha subunit (basic helix-loop-

helix transcription factor)
5.55E-06 BID, PGK1, MIF, NR4A1, ENO1

SP1 Sp1 transcription factor 0.0000127 NR4A1, MIF, CD44, SQSTM1, ME1, CDKN2A, SRC, PSEN1, DDB1

Table 5. Key miRNA-target gene interactions

miRNA Target Gene

hsa-miR-615-3p CDKN2A, DHODH, ENO1, HSPA8, P4HB, PARP1, PRDX2, PSMD8, PTBP1, RPL15, RPL7, TPM3, TUBA1A

hsa-miR-92a-3p ACTB, AHCYL1, BID, ENO1, HSP90B1, HSPA8, MAPK9, NPM1, P4HB, PTBP1, RPL15, RPS10, TPM3

hsa-miR-26b-5p AGPAT3, BID, CTH, DHODH, ID1, IDH2, KEAP1, PSME1, TPM3

hsa-miR-16-5p ACTB, AHCYL1, CD44, CDKN2A, FTL, HSP90B1, HSPA8, SQSTM1, TPM3, TUBA1A

hsa-miR-1-3p ACTB, ANXA2, CD44, HSP90B1, PDIA3, PRDX2, PSME1, PTBP1, TPM3, TRIM26

hsa-miR-484 ACTB, ENO1, HSP90B1, P4HB, PARP1, PSMD8, RPS10, SPHK1, SQSTM1

hsa-miR-20a-5p DHODH, HSPA8, KRT10, MAPK9, PGK1, RPS10, RUNX3, SQSTM1

hsa-miR-17-5p DHODH, HSPA8, KRT10, MAPK9, PARP1, PTBP1, RPL7, RUNX3, SQSTM1

hsa-miR-149-5p AGPAT3, BID, DDB1, HSPA8, IL1B, NPM1, PARP1, PSMD8, RPL15

hsa-miR-124-3p ACTB, CDKN2A, CTNNB1, ID1, NR4A1, PARP1, PTBP1, SPHK1, TUBA1A

Autumn 2023, Volume 13, Number 4
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induces HSPs of different sizes. A signaling pathway 
triggered by heat stress, including arsenic, induces the 
activity of mitogen-activated protein kinases (MAP), 
extracellular regulated kinase (ERK), c-Jun-terminal ki-
nase (JNK), and p38 [29]. The latest hub gene with a de-
gree above 20 is proto-oncogene tyrosine-protein kinase 
Src (SRC). Recently, the first evidence of a molecular 
interaction between constitutive activation of tyrosine 
kinases and resistance to ferroptosis was provided by 
Cirotti et al. [30]. The PPI network and function analysis 
indicated the mitochondrial morphology and functional-
ity changes as the main function of hub-bottleneck pro-
teins following arsenic-induced ferroptosis in the skin. 
Increasing reports have suggested the possibility of mul-
tifaceted regulation of ferroptosis by mitochondria [31]. 
On the other hand, it has been demonstrated that arsenic 

can disrupt mitochondrial function [32]. Considering 
the enrichment of key genes in mitochondrial dysfunc-
tion, as well as the role of this organelle in the ferrop-
tosis process, it is possible to take an important step by 
manipulating these genes in controlling diseases caused 
by ferroptosis in the skin. In the current study, two key 
transcription factors (HIF1A and SP1) were detected that 
target arsenic and ferroptosis-related genes in the skin. In 
a recent bioinformatics analysis, the ferroptosis-related 
gene HIF1A was one of the valid biomarkers for stom-
ach adenocarcinoma [33]. In another study, HIF1A was 
identified as a ferroptosis-related hub gene that may af-
fect the pathogenesis of chronic obstructive pulmonary 
disease via regulating ferroptosis [34]. SP1 is involved 
in most cell processes, such as cell differentiation, cell 
growth, apoptosis, immune responses, and response to 

Figure 2. Arsenic-induced ferroptosis-related subnetwork in the skin 

Fifty-six nodes with 237 interactions and 3 disconnected nodes are presented in the PPI network.

Koushki M, et al. Skin Exposure to Arsenic and Ferroptosis. IJMTFM. 2023; 13(4):E43485.
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DNA damage [35]. In our study, the top ten key miRNAs 
were represented. Several studies have revealed that mi-
croRNAs are involved in the occurrence of various dis-
eases, such as cardiomyopathy, cancers, neurodegenera-
tive diseases, etc. via stimulating or inhibiting ferroptosis 
[36]. In addition, it is known that the interactions between 
miRNAs and toxic metals might participate in the haz-
ardous effects of these toxic elements in the body [37]. 

5. Conclusion

Our findings indicated seven hub genes as candidates for 
triggering arsenic-induced ferroptosis in the skin and iden-
tified key regulators of the process. Functional analysis of 
the key proteins highlighted the link between mitochon-
dria and ferroptosis following arsenic exposure in the skin. 
Therefore, our study may help to understand the molecular 
mechanisms of ferroptosis stimulated by arsenic in the skin. 
However, the role of these ferroptosis-related genes needs 
to be investigated in future experiments, and more studies 
are required to decipher the relationship between mitochon-
dria and ferroptosis in arsenic exposure.
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