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Background: Cisplatin’s common use as an anti-neoplastic drug poses significant challenges 
due to its adverse effects, including renal disorders, neuropathies, hearing impairment, and 
gastrointestinal issues.

Methods: A comprehensive search was done across major bibliographic databases, including 
PubMed, Embase, Web of Science, Google Scholar, and Scopus on cisplatin’s application 
in various cancer treatments. A manual examination of article reference lists was conducted, 
collecting data from 1990 to October 2023 for up-to-date research analysis.

Results: Cisplatin primarily acts by binding to DNA in the cell nucleus and disrupting 
DNA transcription and replication, leading to cytotoxicity and malignant cell destruction. 
Mechanisms of resistance included altered drug absorption, increased efflux and detoxification, 
modified targets, and increased DNA repair. Interactions with matrix proteins, pH changes, 
and food affect cisplatin effectiveness. Cisplatin-induced DNA damage mainly forms DNA 
adducts, causing intra- and inter-strand cross-links. Despite its therapeutic benefits, inevitable 
adverse effects, like nephrotoxicity, ototoxicity, gastrointestinal diseases, hepatotoxicity, 
cardiovascular issues, and neuropathy exist. Strategies to mitigate these include hydration 
therapy, thiol-containing agents, antioxidants, and modulators. Combination therapy enhances 
cisplatin efficacy.

Conclusion: Cisplatin is a potent anticancer tool marked by challenges from adverse effects 
and emerging resistance. Ongoing research focuses on combined therapeutic approaches and 
supports interventions to enhance efficacy and reduce adverse effects, fostering optimism for 
better cancer treatments.
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1. Introduction 

Cancer has significantly affected numer-
ous individuals for an extended period, 
ranking as the world's second most preva-
lent cause of mortality, following closely 
behind heart disease [1]. This ailment is 

intricately linked to genetics, epigenetics, and environ-
mental influences, leading to a wide spectrum of varia-
tions at the levels of tissues, tumors, and individual cells 
[2, 3]. In the context of cancer, the usual sequence of cel-
lular processes and signaling pathways is disrupted [4]. 
Regulations governing cell division are frequently over-
looked, and cancer cells function autonomously, almost 
as if they were orchestrating their unique symphony [5].

The treatment of cancer varies depending on the cancer 
type and its stage. Patients receive a combination of con-
ventional and therapeutic approaches, including surgery, 
chemotherapy, radiation therapy, immunotherapy, gene 
therapy, hormone therapy, and photodynamic therapy, as 
well as combined therapies [6–8]. Cisplatin is a potent and 
invaluable chemotherapy agent employed in the treatment 
of a wide spectrum of malignancies, including bladder, cer-
vix, head and neck, ovary, non-small cell lung, prostate, 
esophagus, and metastatic breast cancers [9–13]. Cispla-
tin stands as one of the most frequently utilized anticancer 
medications, often employed either alone or in combina-
tion with other chemotherapy drugs to address conditions, 
such as head, ovarian, and lung cancers [10, 14]. This med-
ication interacts with nitrogen atoms found in adenine and 
guanine within the DNA molecule, instigating damage to 
the DNA of cancerous cells and inhibiting their replication, 
ultimately resulting in cellular demise [15]. Resistance to 
cisplatin in cancer cases often presents a substantial im-
pediment to successful chemotherapy [14, 16].

In mammals, cisplatin can permeate cell membranes ei-
ther via diffusion through a copper transporter or simple 
diffusion mediated by its receptors [17]. Upon entering 
the cell cytoplasm, cisplatin undergoes hydrolysis and 
transforms into a potent electrophile, which subsequent-
ly reacts with intracellular nuclei. This compound pri-
marily forms interactions with the purine bases present 
in nucleic acids, leading to the formation of DNA-DNA 
or DNA-protein cross-links [15, 18]. The consequences 
of these alterations include disruptions in DNA structure, 
activation of repair mechanisms, and the subsequent in-
duction of apoptosis [18]. Cisplatin is believed to play a 
constructive role in generating oxidative stress, activat-
ing intrinsic and extrinsic apoptosis pathways, promot-
ing P53 expression, and suppressing proto-oncogenes 
[14, 19, 20].

Using cisplatin for cancer treatment comes with some 
real challenges. It can lead to harsh side effects, like kid-
ney problems, nerve damage, hearing issues, and gastro-
intestinal disorders, like nausea and vomiting [21–25]. It 
is challenging when cancer becomes resistant to cisplatin 
[26]. This resistance can happen from the beginning or 
develop over time and is influenced by various factors 
[27]. Even though cisplatin is used a lot for different 
types of cancer, it often does not work well for patients 
with advanced cancer that has spread [28]. 

2. Materials and Methods

Search method and eligibility criteria

A comprehensive search was conducted among major 
electronic databases, including PubMed, Embase, Web 
of Science, Scopus, and Google Scholar to identify stud-
ies investigating the mechanisms of cisplatin in the treat-
ment of various types of cancer, along with its associated 
adverse effects on the human body. Data were collected 
from 1990 to 2023 (October 2023) using specific key-
words, such as “cisplatin”, “cancer”, “adverse effects”, 
“combination” and “mechanism of action” using all 
equivalents and similar phrases. After the initial search, 
relevant articles were selected based on the evaluation 
of their titles and abstract content, and duplicate and ir-
relevant articles were removed to align with our research 
objectives. This review included a wide range of articles, 
including experimental and observational studies, case 
reports, reviews, and commentaries, focusing on the ef-
ficacy of cisplatin in treating diverse types of cancers, as 
well as its associated side effects and the impact of vari-
ous compounds on mitigating these effects. Additionally, 
we assessed the advantages of combining cisplatin with 
other agents. The search was limited to articles published 
in the English language.

3. Results

The mechanism of action of cisplatin

The primary mechanism of cisplatin is widely rec-
ognized as its binding to DNA within the cell nucleus, 
subsequently disrupting normal transcription and DNA 
replication processes [20, 29]. These disruptions can 
instigate cytotoxic processes that ultimately lead to the 
death of cancer cells [30]. Following intravenous admin-
istration, cisplatin rapidly disperses in the tissues and 
exhibits a strong binding affinity, binding up to 95% to 
plasma proteins [31, 32]. This binding is primarily attrib-
uted to platinum’s high reactivity with thiol group sulfur 
[33]. Recent research indicates that the copper transport-
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er protein CTR1 also plays a role in cisplatin attraction 
[15] cisplatinum, or cis-diamminedichloroplatinum (II). 
Cisplatin tends to reduce the concentration of CTR1, 
which in turn, reduces the accumulation of cisplatin 
within cancer cells. Cells with higher CTR1 expression 
may accumulate more cisplatin, rendering them more 
sensitive to its effects [15] cisplatinum, or cis-diammin-
edichloroplatinum (II).

Drug accumulation

Cisplatin is typically administered intravenously, al-
lowing it to circulate throughout the bloodstream [20]. 
High blood serum chloride concentrations can affect cis-
platin by substituting chloride groups, hindering its inter-
action with water molecules. Therefore, cisplatin reach-
es the outer surface of cancer cells primarily as a neutral 
molecule [34]. While the precise biochemical mecha-
nisms underlying cisplatin uptake into cells are not fully 
understood, passive diffusion is believed to be the pri-
mary method of absorption. However, certain facilitated 
or active transport mechanisms may also contribute to 
cisplatin intracellular accumulation [34]. While cisplatin 
absorption is not saturable or inhibited by structural ana-
logs, its degree of absorption relies on energy and can be 
modulated by pharmacological agents, such as the Na+/
K+-ATPase inhibitor ouabain [35].

 Within cells, chloride concentrations typically range 
between 2 and 30 mM. The formation of aqueous species 

from cisplatin occurs as one or both chloride-leaving groups 
are substituted by water molecules, resulting in the forma-
tion of [Pt(H2O)Cl(NH3)2]+ and [Pt(H2O)2(NH3)2]+cations. 
These mono and diaquated forms of cisplatin exhibit high 
reactivity toward the nucleophilic centers of biomolecules, 
with water (H2O) serving as a superior leaving group com-
pared to chloride (Cl) [36].

Binding to non-DNA targets

Before accumulating in the cell cytoplasm, cisplatin 
has the potential to bind to cell membrane phospholip-
ids and phosphatidylserine [37]. Additionally, within the 
cytoplasm of many cells, cisplatin can react with various 
components containing nucleophilic sites, including the 
cytoskeleton’s microfilaments, thiol-containing proteins, 
and peptides, as well as RNA [37, 38]. As a result, it is es-
timated that over 1% of cisplatin molecules entering the 
cell bind to nuclear DNA, while the majority ultimately 
bind to proteins and other biomolecules [39]. Due to the 
strong reactivity of platinum compounds with soft nu-
cleophiles, like sulfur donor biomolecules, glutathione 
tripeptide (GSH) is believed to be one of the primary 
non-DNA targets of cisplatin [40]. GSH is abundantly 
present in cells at concentrations of around 0.5 to 10 mM 
[41]. Both glutathione and other thiol-containing mol-
ecules, like metallothioneins, rapidly bind to platinum, 
forming inactivated platinum-GSH adducts that are sub-
sequently expelled from the cell through non-specific 
glutathione conjugate pumps [42] (Figure 1).
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The interaction with non-DNA targets is thought to 
contribute to the mechanism of cisplatin’s cytotoxicity 
in cancer cells [29]. It is known that cisplatin’s reaction 
with cellular components can disrupt the function of cru-
cial proteins. For example, cisplatin can inhibit Hsp90 
(heat shock protein 90) by binding to its C-terminal ATP-
binding site [43]. Hsp90 is vital for signal transduction 
and cell cycle regulation [44].

Binding to DNA

Cisplatin is known for its high nucleophilicity, making 
it particularly reactive with the N7 atoms of guanine and 
adenine in the major groove of DNA [45]. This reactivity 
leads to the formation of various DNA adducts with dis-
tinct structures upon reaction with cisplatin [15, 46] cis-
platinum, or cis-diamminedichloroplatinum (II). Initially, 
monofunctional DNA adducts are formed, but a majority 
of them exhibit higher reactivity, resulting in the creation 
of inter- or intra-strand cross-links. It has been observed 
that over 55% of cisplatin adducts consist of intra-strand 
crosslinks, specifically 1,2-d (GpG) and around 20-25% 
are d(ApG) intra-strand crosslinks. Minor adducts in-
clude 1,3 intra-strand cross-links and inter-strand cross-
links. Additionally, DNA-protein cross-links have been 
reported for cisplatin [47]. The 1,2 inter-strand DNA ad-
ducts, although not definitively proven, are believed to 
play a crucial role in cisplatin’s anticancer activity, espe-
cially with certain high mobility group proteins (HMG1) 
recognizing these platinum-DNA 1,2 adducts. Notably, 
trans-platinum compounds, which do not form 1,2-ad-
ducts, are inactive for anticancer activity due to their high 
reactivity [48, 49] (Figure 1).

 Furthermore, the efficiency of DNA repair systems, 
such as nucleotide excision repair (NER), varies for dif-
ferent types of adducts [50]. TNER is more efficient at 
repairing 1,3 inter-strand adducts compared to 1,2 intra-
strand adducts, while 1,2 adducts, such as d(GpG), are 
less effectively repaired [51]. The cytotoxic mechanism 
of cisplatin may involve not only 1,2 inter-strand cross-
links but also other adducts, such as inter-strand cross-
links, making it important to consider the broader spec-
trum of adducts in understanding cisplatin’s anticancer 
activity. Additionally, certain DNA repair enzymes are 
more efficient at removing 1,3 intra-strand adducts than 
1,2 intra-strand adducts, highlighting the complexity of 
cisplatin’s interactions with DNA [52] (Figure 1).

Cisplatin resistance

Cisplatin treatment encounters a significant challenge 
in the form of resistance exhibited by cancer cells [14]. It 

is important to note that the nature of cisplatin resistance 
varies among different types of cancer. Some cancers, 
such as ovarian, testicular, small cell lung, and head and 
neck cancers, exhibit sensitivity to cisplatin [53]. Con-
versely, colorectal cancer and non-small cell lung cancer 
tend to be highly resistant to this drug [53]. There are two 
primary categories of cisplatin drug resistance: Intrinsic 
resistance and acquired resistance. Intrinsic resistance 
represents the initial resistance observed when starting 
cisplatin treatment, while acquired cisplatin resistance is 
initially responsive but eventually loses its effectiveness 
over time [54]. Several factors contribute to cisplatin 
resistance. These include reduced cellular uptake of the 
drug, increased drug efflux from cells, detoxification of 
the drug by cellular thiols, alterations in drug targets, and 
enhanced DNA repair mechanisms [55, 56].

Understanding the mechanisms behind cisplatin resis-
tance is crucial for developing strategies to overcome 
this obstacle and improve the efficacy of cisplatin-based 
cancer treatments.

Circulation and drug delivery

The delivery of chemotherapy drugs to tumor sites 
via blood circulation and oxygenation differs signifi-
cantly from regular blood flow [57]. While hypoxia can 
negatively impact the efficacy of various drugs, its in-
fluence on cisplatin remains relatively limited [58]. In-
terestingly, cisplatin exhibits substantial variability in its 
concentration when found in different types of human 
tumors, with notably higher levels detected in necrotic 
cells compared to viable ones [15] cisplatinum, or cis-
diamminedichloroplatinum (II). It is worth noting that 
the concentration of cisplatin in human autopsy tissues 
does not consistently correspond to the blood flow veloc-
ity in the respective organs [59].

The concentration of cisplatin within human tumors 
is subject to variability, influenced by factors, such as 
blood pressure, heart rate, tumor type, and metastatic 
location [60]. Tumors, due to their impaired self-regula-
tion of blood flow, are more susceptible to fluctuations in 
blood pressure compared to normal tissues [60]. More-
over, various factors, including alterations in blood pres-
sure, can selectively affect blood flow within tumors, 
consequently affecting the targeted delivery of drugs to 
the tumor site [60]. Factors, such as elevated fibrinogen 
levels and alterations in red blood cell shape have the po-
tential to diminish tumor blood flow and increase blood 
viscosity. Conversely, agents that reduce blood viscosity 
can enhance tumor blood flow, ultimately leading to im-
proved drug delivery [60].
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Influx or efflux of drug 

Cisplatin-induced apoptosis is subject to various influ-
ences within the tumor microenvironment [61]. Extracel-
lular matrix proteins, such as laminin, collagen type IV, 
and fibronectin, as well as extracellular gamma-glutamyl-
transferase (GGT), can modulate cisplatin’s effectiveness 
by binding to tumor cells and rendering the drug inactive 
through thiol groups [62]. The typically acidic extracel-
lular pH in tumors can affect cisplatin uptake, with lower 
extracellular pH levels enhancing drug absorption [60]. 
Dietary factors, like glucose and bicarbonate, have the 
potential to alter tumor extracellular pH, consequently af-
fecting cisplatin’s efficacy [63]. Additionally, certain ele-
ments, like mannitol, NaCl, CaCl2, and KCl can influence 
cisplatin absorption and cytotoxicity in vitro [63].

Resistance mechanisms encompass increased efflux of 
cisplatin from cells, including efflux from the cell nucleus 
[64]. Copper-transporting P-type adenosine triphosphatas-
es ATP7A and ATP7B are involved in platinum efflux and 
resistance [65]. The binding of platinum to proteins, where 
it becomes less cytotoxic, can contribute to resistance. 
Several pumps, including MRP1, MRP2, p-glycoprotein, 
and MVP/LRP, may participate in cisplatin resistance, al-
though their clinical relevance varies [15] cisplatinum, or 
cis-diamminedichloroplatinum (II). Furthermore, abnor-
mal sorting of cisplatin transporters and lysosomal pro-
teins, along with the sequestration of the drug within in-
tracellular organelles, such as melanosomes, can influence 
resistance. Intracellular pH levels can also affect cisplatin 
efflux and subsequently, its cytotoxicity [52]. The clinical 
significance of these resistance mechanisms remains un-
certain, and further research is essential to gain a compre-
hensive understanding of their implications.

DNA repair

Cisplatin-induced damage to DNA, particularly in ac-
tively transcribed regions, is primarily managed by the 
nucleotide excision repair (NER) system, encompassing 
genes, such as ERCC1, ERCC1/XPF, XPA, and BRCA1 
[54]. Elevated ERCC1 expression has been linked to di-
minished effectiveness of platinum-based treatments in 
ovarian cancer and NSCLC [66]. Polymorphisms in XPD, 
a crucial component of NER transcriptional repair, can 
influence the sensitivity to platinum-based therapies [54].

Cisplatin resistance may also be attributed to various 
factors, including the up-regulation of XPA, activation 
of the Fanconi anemia/BRCA pathway, and the over-
expression of DNA polymerase-ɛ, which plays a role 
in translesion synthesis across platinated cross-links 

[67]. DNA polymerase-η and DNA polymerase-ζ are 
involved in a potentially mutagenic bypass mechanism 
for replication-blocking DNA adducts, which could con-
tribute to resistance [68]. Additionally, mechanisms, like 
topoisomerase-II and homologous recombination repair 
may enhance the repair of platinum-induced DNA dam-
age, while non-homologous end-joining repair could in-
crease platinum’s efficacy [69]. While clinical evidence 
supports the involvement of the NER pathway in plati-
num resistance, further research is necessary to fully un-
derstand the role of other DNA repair systems.

Reduced DNA mismatch repair

The process of DNA post-replication mismatch re-
pair (MMR) plays an essential role in the response to 
platinum-induced DNA damage, leading to apoptosis 
and increased sensitivity to platinum-based therapies 
[70]. Interestingly, cells lacking MMR or with reduced 
nuclear levels of MMR proteins, such as hMLH1 and 
hMLH2, often show high resistance to cisplatin and re-
duced propensity for apoptosis [70]. An intact p73 and 
c-Abl system is essential for MMR to effectively induce 
apoptosis. Cells lacking p73 expression may be resistant 
to cisplatin-induced DNA damage [56]. Furthermore, 
concomitant loss of p53 function increases resistance. 
In clinical scenarios, frequent methylation and down-
regulation of the hMLH1 gene are observed in germ 
cell tumors after treatment, implying the potential clini-
cal relevance of DNA mismatch repair deficiency in the 
context of platinum resistance [71].

Nrf2 signaling pathway

Nuclear factor erythroid-related factor 2 (Nrf2), func-
tioning as a transcription factor, holds a pivotal role in 
safeguarding cellular integrity against oxidative harm 
[72, 73]. Elevated levels of ROS stimulate Nrf2 signal-
ing, thereby augmenting the activity of crucial antioxi-
dant enzymes, like catalase, superoxide dismutase, and 
glutathione peroxidase, which are paramount in mitigat-
ing oxidative stress. Intriguingly, the activation of Nrf2 
in cancer cells paradoxically engenders resistance to 
chemotherapy by diminishing ROS levels, consequently 
curtailing oxidative stress-induced cell demise [74]. Fur-
thermore, cisplatin treatment exacerbates mitochondrial 
dysfunction, heightens ROS levels, and begets drug resis-
tance [14]. While Nrf2 promptly responds to oxidative 
stress by activating genes responsible for antioxidant de-
fenses, it can also contribute to cisplatin resistance [75]. 
Natural compounds, such as melatonin and phytochemi-
cals exhibit the capability to trigger Nrf2 and confer cel-
lular protection [76, 77]. Conversely, Nrf2 deficiency 
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culminates in a reduction of total glutathione (GSH) 
levels, exacerbating cisplatin resistance [75]. Exploring 
the regulation of Nrf2 through microRNAs emerges as 
a promising avenue to reestablish cisplatin sensitivity in 
cancer cells and counteract drug resistance.

Adverse effects of cisplatin

Nephrotoxicity

Renal excretion is the major pathway of cisplatin 
elimination; thus, cisplatin can be concentrated in renal 
tubules and leads to dose-limiting renal toxicity [78]. 
Cisplatin-induced nephrotoxicity involves acute kidney 
disease (AKD) and chronic kidney disease (CKD), ex-
cessive urination or polyuria, renal magnesium loss and 
hypomagnesemia, Fanconi-like syndrome and anemia, 
and cases treated with cisplatin-based chemotherapy 
regimens constantly lose 15% to 35% of their normal 
renal system function [78]. The nephropathy caused by 
cisplatin can be classified into 1) tubular epithelial cell 
damage (primarily proximal tubules), 2) small blood 
vessels injury, 3) glomerular damage, 4) interstitial in-
flammation (nephritis), and 5) secretion of pro-inflam-
matory cytokines (e.g. TNF-α, IL-6, and IL-1-β) [78]. 
The initial effects of cisplatin are reduction of renal 
blood flow (RBF), decrease of glomerular filtration rate 
(GFR), and polyuria that are coincident with elevated 
electrolyte elimination, decreased creatinine clearance 
and increased levels of blood urea nitrogen (BUN) [31, 
78]. The anti-tumor and possibly the nephrotoxic prop-
erties of cisplatin may result from its cellular uptake by 
Ctr1 transporter and then cytosolic biotransformation 
of cysteine conjugate of cisplatin by β-lyase to more 
potent reactive electrophilic metabolites (diaquo-diam-
mineplatinum or mono-chloro-mono-aquodiammine-
platinum), which are able to bind to DNA and alkylat-
ing purine and pyrimidine nitrogenous bases [78]. These 
reactive metabolites can also depict cytotoxic activity by 
the development of oxidative stress and causing damage 
to macromolecules, such as proteins and lipids, likely 
leading to normal cell death [52, 78]. These findings pro-
posed that cisplatin may contribute to acute renal failure 
through its capacity to inhibit DNA synthesis as well as 
transport functions [79].

Ototoxicity

The occurrence of cisplatin-associated ototoxicity var-
ies from 10 to 90% of patients receiving cisplatin-based 
regimens and children and older adult patients are more 
susceptible to this effect of cisplatin [80]. Cisplatin pri-
marily influences the cochlea (so-called the organ of 

Corti), particularly the outer hair cells (OHCs) in the 
inner ear [81]. Considering the restricted regenerative 
capability of the sensory hair cells and other supporting 
cells, serious cellular damage, such as inflammation, ex-
cessive ROS production, and necrosis induced by cispla-
tin will result in irreversible toxicity and high-frequency 
permanent hearing loss [81]. Concomitant use of drugs, 
such as loop diuretics (furosemide and bumetanide) and 
aminoglycoside antibiotics (kanamycin and amikacin) 
may exacerbate cisplatin-induced ototoxicity and neph-
rotoxicity [81]. Several therapeutic options have been 
proposed to relieve cisplatin-related ototoxicity, among 
which the administration of systematic or local and anti-
inflammatory drugs and antioxidants medications are 
very crucial [23].

Gastrointestinal toxicities

Nausea and vomiting are major symptoms that develop 
1-4 h after starting treatment with cisplatin and may last 
up to 24 hours after chemotherapy [82]. Cisplatin causes 
remarkable nausea and emesis by triggering the release of 
5-hydroxytryptamine (5-HT; serotonin) from enterochro-
maffin cells (ECs) of the intestinal mucosa, which stimu-
lates the 5-HT3 receptors located in the adjacent vagal af-
ferent neurons (VANs), thereby leading to the vomiting 
reflex activation [83, 84]. Noticeable nausea and emesis 
appear approximately in all patients and commonly can 
be managed by 5HT3 receptor antagonists (ondansetron 
and granisetron), substance P receptor [neurokinin 1 
(NK1)] antagonists (aprepitant, rolapitant, and fosapre-
pitant), and administration of high-dose (4–8 mg daily) 
corticosteroids (e.g. dexamethasone and methylpredniso-
lone) [83]. Other gastrointestinal toxicities that have been 
observed and reported by cisplatin include diarrhea, pan-
creatitis, mucositis, dysgeusia or sense of metallic taste, 
intestinal barrier disruption, etc. [85].

Hepatotoxicity

In aggressive treatment protocols where high doses of 
cisplatin are used for tumor growth inhibition, therapy-re-
lated hepatotoxicity also appears [86]. However, cisplatin-
associated hepatotoxicity has received less attention and 
available information about the underlying mechanisms 
of this damage is not enough [87]. It has been reported 
that oxidative stress through the over-production of ROS, 
reduction of the antioxidant defense system (reduced glu-
tathione and glutathione reductase levels and increased 
glutathione peroxidase, catalase, and gamma-glutamyl 
transpeptidase levels), elevated bilirubin levels, increased 
expression of CYP2E1, and disturbance in the mitochon-
drial integrity and function plays an essential role in cispl-
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atin-related liver injury [88]. Administration of high doses 
of selenium, vitamin E, N-acetyl-cysteine, and proven for-
mulations containing liver-supportive ingredients, such as 
silimarin can reduce cisplatin-induced hepatotoxicity [89].

Other adverse outcomes

In some cases, mainly overdose and combined regi-
mens with other drugs, cisplatin is also able to induce 
other toxicities in different systems, including cardio-
vascular toxicity (bradycardia, ischemic vascular events, 
myocardial ischemia/ infarction, coronary artery vaso-
spasm, etc.), neurotoxicity (peripheral neuropathy mani-
fested mainly by sensory disturbance such as paresthesia 
and loss of proprioception), retinopathy and vision prob-
lems, mild-to-moderate myelosuppression and hemato-
logical disorders (anemia, transient thrombocytopenia, 
and leukopenia), and electrolyte abnormalities, includ-
ing hypomagnesemia, hypocalcemia, hypophosphate-
mia, and hypokalemia [15, 85, 90] cisplatinum, or cis-
diamminedichloroplatinum (II). 

 Alleviation of cisplatin-induced toxicities

Up to now, various supportive and therapeutic strate-
gies, including aggressive volume expansion by intra-
venous (IV) fluid therapy, administration of thiol-con-
taining adjuvants by IV infusion, antiemetic drugs, etc. 
have been used clinically to alleviate cisplatin-induced 
toxicities in different body organs [85, 91]. Unfortunate-
ly, to date, no specific antidote has been introduced for 
the treatment of cisplatin poisoning [85, 91]. Although 
a number of other medicinal agents (e.g. allopurinol, 
Colestipol, ditiocarb sodium, ORG 2766, etc.) or natu-
ral-occurring agents (curcumin, silimarin, resveratrol, 
etc.) have been evaluated to reduce the various toxicities 
caused by cisplatin, none of them had a proven efficacy 
and more clinical studies are required to prove their po-
tentially beneficial effects [20, 92, 93].

Alleviation of nephrotoxicity

Fluid therapy

The standard and recommended protocol in all guidelines 
for the prevention of cisplatin-induced nephrotoxicity is to 
use lower doses of cisplatin and the administration of high 
volumes (4-6 L/day) of isotonic saline solutions [94]. Sodi-
um chloride saline solutions enhance the anionic (ionized) 
state of cisplatin and decrease urine platinum concentra-
tions to limit renal toxicity [94]. Hydration therapy with 
0.9% sodium chloride and mannitol as an osmotic diuretic 
agent is required to achieve a urinary output of 1-3 mL/

kg/h for 6-24 hours [94]. Given the urine flow-dependent 
and creatinine clearance-independent manner of cisplatin 
renal clearance, it is essential to manage urinary output 
and fluid intake in the targeted and balanced state without 
electrolyte imbalances [78, 94]. Hemodialysis is not effec-
tive in patients suffering from cisplatin overdoses, likely as 
a consequence of the high protein binding property of this 
anti-neoplastic drug [94]. However, in renal failure cases, 
hemodialysis may be helpful. Plasmapheresis was noted as 
a valuable approach, which binds a major part of cisplatin 
to plasma proteins and thereby reduces its concentration in 
blood circulation significantly [94].

Amifostine

Amifostine is a thiol-containing agent that has been clini-
cally used to regulate cisplatin-induced nephrotoxicity. 
Amifostine is an organic thiophosphate cytoprotective ad-
juvant and is a prodrug that is dephosphorylated by alkaline 
phosphatase in tissues to a pharmacologically active free 
thiol metabolite and is responsible for the reduction of the 
cisplatin-induced oxidative stress and cumulative nephro-
toxicity [95, 96]. It is most effective when administered 
prior to cisplatin, and may offer additional beneficial effects 
by limiting myelosuppression, mucositis, and neurotoxicity. 
Non-cancerous and normal cells are preferentially protect-
ed, as amifostine and its metabolites accumulate in normal 
host cells at concentrations 100 times higher than in cancer 
cells. Administration of amifostine can give rise to hypoten-
sion; thus, the patient receiving this drug must be hydrated 
adequately and intermittent blood pressure monitoring dur-
ing therapy is needed [94–96].

Sodium thiosulfate

Sodium thiosulfate or thiosulfuric acid is an inorganic 
sulfur donor agent that acts by binding to extracellular 
protein-unbound platinum species, which limits the cis-
platin accumulation and deposition in the renal tubules 
to develop insult [97]. Thiosulfate may limit neurotoxic-
ity, nephrotoxicity, and ototoxicity from cisplatin [98]. 
Like amifostine, several mechanisms are proposed, by 
which this agent evokes its cytoprotective activity, in-
cluding binding to reactive cisplatin intermediates, scav-
enging free radicals, or regenerating intracellular gluta-
thione [98]. Thiosulfate needs to be administered as soon 
as possible after cisplatin exposure to achieve maximum 
efficacy, and as an intravenous infusion because of its 
short plasma half-life (approximately 20 minutes) [94]. 
When thiosulfate was administered as an IV bolus of 4 g/
m2 and continued as an infusion of 12 g/m2 over 6 hours, 
it limited renal toxicity in patients receiving cisplatin at a 
dose as high as 270 mg/m2 [94].
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N-acetyl cysteine (NAC)

In some animal and clinical studies, N-acetyl cysteine 
(NAC) was used to hinder cisplatin-associated renal tox-
icity and showed paradoxical outcomes. However, this 
agent may be useful in high-risk patients for nephrotox-
icity [99]. N-acetyl cysteine is a thiol group-rich supple-
ment derived from L-cysteine amino acid, which pre-
vents cisplatin from depleting cellular GSH content or 
raising the peroxide and malondialdehyde (MDA) levels 
[99]. It directly decreases the amount of ROS, prevents 
mitochondrial-mediated apoptosis induced by cisplatin, 
and protects against renal injury. Its optimum protec-
tive effect is observed when administered during or two 
hours after chemotherapy [99].

Theophylline

It is hypothesized that the contraction caused by cispla-
tin in small vessels is mediated by the adenosine receptor 
and therefore, its inhibition by theophylline (adenosine 
receptor blocker) can prevent this event. There are a 
few studies claiming that theophylline can be effective 
in improving the glomerular filtration rate (GFR) that is 
impaired by cisplatin. However, more clinical trials are 
needed to prove its potentially beneficial effects [100].

Glycine

In limited experimental studies, it has been mentioned 
that the administration of glycine amino acid can reduce 
the kidney damage caused by cisplatin. For example, a 
study has shown that the injection of glycine was able 
to reduce the platinum uptake by the renal tubular cells 
[101]. Alleviation of neurotoxicity

BNP7787

BNP7787 is a disulfide of MESNA (sodium 2-mercap-
toethane sulfonate) and is being investigated as another 
thiol-containing detoxifying agent for cisplatin toxicity. 
In controlled animal trials, BNP7787 was shown to limit 
cisplatin-induced nephrotoxicity, neurotoxicity, and my-
elosuppression [94].

Vitamin E

Vitamin E is a fat-soluble vitamin that is found in vari-
ous foods and natural supplements. Several studies have 
shown that vitamin E-rich dieting as well as vitamin E 
supplementation (400 IU daily) is beneficial in mitigat-
ing the symptoms of peripheral neuropathy in cisplatin-
treated patients [102].

Fosfomycin

Fosfomycin is a broad-spectrum antibiotic used to treat 
uncomplicated urinary tract infections and cystitis [103]. 
In addition to antimicrobial activity, fosfomycin acts as 
a free-radical scavenger and anti-inflammatory agent if 
administered 2-3 days prior to cisplatin, thereby leading 
to the alleviation of cisplatin-related neurotoxicity, neph-
rotoxicity, and ototoxicity [104].

Cisplatin-based combination therapy

While cisplatin has demonstrated efficacy in the treat-
ment of various human cancers, it is accompanied by 
several challenges, including chemotherapy resistance, 
tumor recurrence, significant side effects, unfavorable 
prognosis, and numerous adverse reactions in patients 
[14, 105–107]. In order to address these complexities as-
sociated with cisplatin therapy, combination therapy has 
emerged as a valuable strategy [14]. Combination thera-
py involves the concurrent use of two or more drugs, ra-
diotherapeutic agents, natural bioactive compounds, etc. 
each possessing distinct mechanisms of action [14, 108, 
109]. Table 1 presents a comprehensive compilation of 
diverse combination therapies involving cisplatin.

The utilization of combination therapy holds significant 
promise in mitigating the limitations associated with cispla-
tin treatment [105, 110]. By integrating drugs with comple-
mentary procedures, we increase treatment results mini-
mize the above-mentioned issues and ultimately improve 
the overall prognosis for cancer patients [111–113].

The combination of metformin with cisplatin leads to 
a substantial increase in the apoptosis index, surpassing 
the effects observed in both monotherapy and control 
groups. Notably, this synergistic effect closely resembles 
the impact achieved by the mTOR inhibitor rapamycin 
and consistently manifests across various cancer types, 
including lung, breast, colon, gastric, and ovarian can-
cers. Furthermore, the co-administration of metformin 
and cisplatin results in a reduction in tumor volume com-
pared to monotherapy [14].

The mTOR/Akt signaling pathway assumes a pivotal role 
in sensitizing cancer cells and enhancing the efficacy of cis-
platin, particularly in cases characterized by high resistance 
to cisplatin [123]. The combination of metformin and cis-
platin induces a substantial increase in anti-proliferative ef-
fects and a higher percentage of apoptotic cells compared 
to cisplatin monotherapy, in addition to inhibiting migra-
tion and invasion. While cisplatin exhibits a dose- and time-
dependent inhibition of cell proliferation, metformin expe-
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dites the cytotoxic effects of chemotherapy and enhances 
cell sensitivity to cisplatin [14].

Combination therapy has proven effective in reducing 
tumor growth and volume in animal studies, promot-
ing cancer cell apoptosis, significantly reducing colony 
formation and spherogenesis, and mitigating side effects 
[110]. This synergy achieved by combining metformin 
with cisplatin significantly impedes the growth of can-
cer cells through multifaceted anticancer mechanisms, 
encompassing pathways involving AMPK/mTOR, E-
cadherinw, and MMP-9. These findings underscore the 
potential of metformin-cisplatin combination therapy to 
enhance the efficacy of cancer treatment [14].

Clinical, in vivo, and in vivo studies of this combination 
therapy include 4 mg of cisplatin and 200 mg/kg of metfor-
min administered orally daily across various cancer types, 
such as advanced non-small cell lung, ovarian, breast, and 
colon cancers, etc. Consistent results have demonstrated 
that this combined approach elevates apoptosis and induces 
tumor cell death while sensitizing cisplatin-resistant cells to 
treatment. These compelling findings underscore the clini-
cal relevance and effectiveness of metformin-cisplatin com-
bination therapy in cancer management [14]. Additionally, 
other combination therapies have shown promise in various 
cancer types. For instance, the combined treatment of cispl-
atin and fluorouracil has proven effective for head and neck 
squamous cell carcinoma [114]. When the combination of 

mitomycin C and cisplatin is employed, positive outcomes 
are observed in the treatment of colorectal cancer [115]. Pa-
tients with bladder and stomach cancer have benefited from 
the combination of cisplatin and 5-fluorouracil, which has 
been a successful treatment option [116]. Combining cis-
platin with vinblastine and bleomycin has yielded accept-
able results in the treatment of uterine cancer and enhanced 
sensitivity in resistant cells [117]. Moreover, cisplatin in 
conjunction with thymoquinone has demonstrated efficacy 
in lung cancer [118]. Additionally, cisplatin combined with 
fenoxodiol has shown promise in prostate cancer cell lines 
[119]. Furthermore, combination therapy involving trastu-
zumab and cisplatin plays a crucial role in breast cancer 
treatment [120]. Finally, the combination of cisplatin with 
cyclophosphamide and paclitaxel is a favorable choice for 
ovarian cancer, as it has been reported to enhance the ef-
fectiveness of cisplatin against cisplatin-resistant ovarian 
tumor cells compared to cisplatin monotherapy [121, 122].

4. Conclusion

In conclusion, cisplatin stands as a widely utilized che-
motherapeutic agent, primarily exerting its mechanism 
of action through DNA binding, which leads to disrup-
tions in transcription and DNA replication, ultimately 
culminating in the demise of cancer cells. It also engages 
with various non-DNA targets, thereby contributing to 
its cytotoxicity. Nevertheless, the application of cisplatin 
in clinical settings often encounters multifaceted chal-

Table 1. Illustration of various combination treatments with cisplatin

Drug Combined Drug Type of Cancer Ref

Cisplatin Metformin
Lung-ovarian, breast, colorectal, nasopha-

ryngeal, meningioma, and endometrial 
cancer

Jafarzadeh et al. 
(2022) [14]

Cisplatin Fluorouracil Head and neck squamous 
cell carcinoma

Jacobs et al. 
(1992) [114]

Cisplatin Mitomycin C Colorectal cancer, Pinto et al. (2016) 
[115]

Cisplatin 5-fluorouracil Bladder cancer, and gastric cancer Hussain et al. 
(2001) [116]

Cisplatin Vinblastine+bleomycin Cervical carcinoma Friedlander et al. 
(1983) [117]

Cisplatin Thymoquinone Lung cancer Jafri et al. (2010) 
[118]

Cisplatin Phenoxodiol Prostate cancer McPherson et al. 
(2009) [119]

Cisplatin Trastuzumab Breast cancer Pegram et al. 
(1999) [120]

Cisplatin Cyclophosphamide
and paclitaxel Ovarian cancer

McGuire et al. 
(1996) [121]

Cai et al. (2015) 
[122]
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lenges, encompassing resistance development, adverse 
effects, and constraints in drug delivery.

The emergence of cisplatin resistance can be attributed to 
multiple factors, including diminished drug uptake, augment-
ed efflux, cellular thiol-mediated detoxification, modifica-
tions in drug targets, and enhanced DNA repair mechanisms. 
Effectively surmounting these resistance mechanisms stands 
as a pivotal endeavor to enhance the efficacy of cisplatin-
based cancer therapies. The effective delivery of cisplatin to 
tumor sites via the circulatory system, in conjunction with 
adequate oxygenation, is contingent upon a myriad of fac-
tors, encompassing tumor type, metastatic localization, and 
alterations in blood pressure regulation. An in-depth compre-
hension of these factors remains imperative for the optimiza-
tion of drug delivery to tumor regions.

Cisplatin-induced toxicities, spanning nephrotoxicity, 
ototoxicity, gastrointestinal adversities, hepatotoxicity, 
etc. can significantly impede the quality of life of pa-
tients. Numerous strategies have been explored to allevi-
ate these toxicities, encompassing fluid therapy, the use 
of thiol-containing agents, like amifostine and sodium 
thiosulfate, antioxidants, such as N-acetyl cysteine and 
vitamin E, as well as adenosine receptor blockers, like 
theophylline. The advent of combination therapy involv-
ing cisplatin has surfaced as a valuable approach to aug-
ment treatment outcomes and ameliorate the limitations 
associated with cisplatin monotherapy. Various combina-
tion therapies have exhibited promise in the treatment of 
diverse cancer types, including head and neck squamous 
cell carcinoma, and lung, ovarian, breast, colon, colorec-
tal, bladder, stomach, uterine, and prostate cancers.

Overall, cisplatin maintains its essential place in can-
cer treatment, and ongoing research efforts are directed 
towards increasing its efficacy while reducing adverse 
effects and overcoming the challenges of resistance 
through the application of combination therapies and 
novel approaches.
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