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Abstract
The evaluation of left ventricular wall motion in Magnetic Resonance Imaging (MRI) 
clinical practice is based on a visual assessment of cine-MRI sequences. In fact, clinical 
interpreters (radiologists) proceed with a global visual evaluation of multiple cine-MRI 
sequences acquired in the three standard views. In addition, some functional parameters 
are quantified following a manual or a semi-automatic contouring of the myocardial 
borders. Although these parameters give information about the functional state of the 
left ventricle, they are not able to provide the location and the extent of wall motion 
abnormalities, which are associated with many cardiovascular diseases. In the past 
years, several approaches were developed to overcome the limitations of the classical 
evaluation techniques of left ventricular function. The aim of this article is to present an 
overview of the different methods and to summarize the relevant techniques based on 
myocardial contour detection and optical flow for regional assessment of left ventricular 
abnormalities. 
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INTRODUCTION

In recent years, several researches have focused on the study 
of the regional left ventricle (LV) function in cardiac Magnet-
ic Resonance Imaging (MRI) [1-3]. Despite the multiplicity 
of methods and algorithms proposed in the literature, their 
main topic remains the development of precise quantitative 
parameters and the combination of information collected 
by the use of different modalities in order to assist in left 
ventricular diagnosis. These methods can be classified into 
three main families: the first family includes all the methods 
dedicated to the detection of myocardial borders [4-6]. The 
second family is relative to cardiac deformation monitoring 
approaches based on optical flow methods [7, 8] third family 
entails the techniques of computing parametric images used 
to study the regional cardiac function [9-12]. In this article, 
we intend to present an overview of the two first approaches: 
the detection of myocardial borders and optical flow meth-
ods.

Approaches Bases on the Detection of Myocardial 
Borders

The study of left ventricular function in cardiac imaging, 
specifically in MRI, requires a delineation of the myocardial 

contours in order to have access to global parameters such as 
systolic ejection volume, myocardial mass, and left ventricular 
ejection fraction (LVEF). Usually, this segmentation is estab-
lished manually by the radiologist or semi-automatically with 
some adjustments made by the manipulator [13, 14]. The re-
sult of LVEF depends on the specificity and the quality of the 
delineation of the endocardial and epicardial contours. This 
procedure is considered a very difficult task in practice since 
it requires the segmentation of the myocardial edges through 
a series of images in short-axis view. In clinical practice, some 
radiologists use only the myocardial contours of the end dias-
tole image (corresponding to the telediastolic moment when 
the left ventricular volume reaches its maximum) and the 
end systole image (where the volume of the LV is at a mini-
mum) to compute LVEF. To overcome these limitations, sev-
eral researchers have developed semi-automatic or automatic 
approaches for the detection of myocardial contours [4, 15]. 
We distinguish the approaches based on the intensity of the 
pixels which were initially proposed for the segmentation of 
the endocardial contours. These techniques such as histogram 
thresholding methods and their derivatives (adaptive thresh-
olding methods) make use of the distribution of gray levels in 
the image to separate the ventricular cavity from the rest of the 
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objects in this image [16, 17]. The results of these techniques 
are very dependent on the contrast of the image and the choice 
of the threshold value. Moreover, these approaches do not take 
into account the geometric shape of the object to be detected, 
making the task of segmentation very difficult especially with 
regard to the shape of the cardiac cavities.
Other segmentation methods, based on clustering, have been 
developed in the literature [18, 19]. Among the most used 
approaches belonging to this family are those based on the 
K-means algorithm and other classification methods [20, 21]. 
The latter attributes some specific characteristics for each pixel 
of the image, resulting in a set of different classes. Each class 
contains pixels with similar properties. The image is then divid-
ed into sub-regions, making it possible to segment the object 
of interest. These methods have proven their accuracy in de-
tecting objects in medical images. However, their robustness in 
cardiac MRI is constrained by the irregular shape of the myo-
cardial contours and the interdependence of the pixels with 
their neighborhood. The limitations inherent to the previous 
methods are relatively overcome by the advent of new ap-
proaches described as “high level” approaches. The algorithms 
relative to these techniques integrate geometric models that 
are well adapted to the topology and the irregularities of myo-
cardial borders thanks to an iterative process including a priori 
knowledge. Among the techniques based on this approach, we 
can name the parametric deformable models like the active 
contour methods or “Snakes” and the geometric models such 
as the level set methods [22-24]. These models are most adapt-
ed to the segmentation of endocardial and epicardial contours 
and are based on the minimization of an energy function after 
placing an initial curve close to the contour of the myocardi-
um to be detected. In an iterative process, this curve gradually 
moves towards the object of interest until it coincides with the 
desired contour. The forces which push the initialization curve 
to deform and to move towards the desired object are associat-
ed with an energy function which takes into account the char-
acteristics of the curve (internal forces), the properties of the 
image (External forces), and the interaction between the curve 
and the image [25, 26]. Like the active contour methods, the 
“level set” algorithms require an initialization of a curve that 
must be represented implicitly. This contour is considered as 
the level 0 of a scalar function that must be of a higher dimen-
sion. This curve evolves at a speed that is dependent on time 
and on the characteristics of this curve (the mean curvature 
or the normal curvature). The level set method allows a good 
adaptation to the irregularities of the myocardial contours with 
more precision in the detection. However, the methods based 
on the deformable model, whether parametric or geometric 
models, require a user interaction and they are very sensitive 
to the initialization step [4, 27]. In recent years, new hybrid 
methods using deformable model algorithms combined with 
statistical models have yielded promising results in the detec-
tion of left ventricular abnormalities. These methods include 
the Active Appearance model (AAM) and the Point Distribu-
tion Model (PDM) [28, 29].

Optical Flow Methods

Several studies based on the optical flow approach have been 
developed in the literature to estimate the movement and the 
displacement of the myocardium [30, 31]. This approach is 
a representation of the apparent movement of objects from a 

sequence of images. It relies mainly on the assumption of the 
invariance of the intensities of pixels over time and on the 
spatial coherence. Respecting these assumptions is crucial to 
estimate the movement that is usually measured between two 
consecutive images. However, several authors have used more 
images in their work to increase the accuracy and the stability 
of estimation. There are many methods of optical flow that can 
be classified into three families: differential optical flow, optical 
flow based on energy, and other algorithms based on phase. 
Among the works on differential optical flow, we can name 
those of Horn and Schunck, which are among the first works 
on this approach [32]. Their method describes the apparent 
motion of an object by measuring for each pixel a velocity 
vector that describes its displacement between two successive 
images. The differential notation comes from the fact that the 
motion is estimated from the spatio- temporal derivatives of 
image intensities [8, 33]. Other approaches based on energy 
have shown very promising results in cardiac MRI. They in-
volve a frequency technique that uses a Gabor 3D filter bank 
to estimate the motion in a sequence of images [34, 35]. This 
approach assumes that the tracking of the movement of an ob-
ject over time requires the identification of the orientation of 
this object in a space-time repository, also called a space-time 
space. In this context, Heeger et al. [36] proposed the use of a 
set of Gabor 3D filters in their work on optical flow: each filter 
is designed to search for a well-defined frequency. The combi-
nation of the responses of these filters allows the calculation 
of the energies and the estimation of the optical flow for each 
pixel. From these energy-based methods, other approaches 
based on the phase were derived. These methods use Gabor 
3D filters and the same general equations of the optical flow for 
the computation of phase features. However, unlike the differ-
ential methods based on the invariance of the intensity, these 
approaches rely on the invariance of the phase gradient over 
time for the estimation of the velocity of the displacement [37, 
38]. The main limitations of these spatio-temporal approaches 
lie in the difficulty of respecting the optical flow assumptions 
and the relatively high number of used filters, making the esti-
mation process very complex [39].

CONCLUSIONS

In the present article, we reviewed two different approaches 
for the assessment of left ventricular function. The first ap-
proach is based on the delineation of myocardial borders in 
order to provide a precise measurement of the LVEF. The 
second method described from literature is based on the op-
tical flow algorithm. The validation of these two approaches 
in cine MRI and tagged sequences reveal that they seem to 
represent promising techniques that are likely to improve the 
detection of left ventricular wall motion abnormalities. How-
ever, further studies are needed to ameliorate the reproduc-
ibility of these techniques and facilitate their integration in 
cardiac MRI clinical routine.
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