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Objective
Tissue-specific stem cells divide to generate different cell types for the purpose of 
tissue repair in the adult. The aim of this study was to detect the significance of 
neurogenesis in the central nervous system in patients with cerebral palsy (CP).
Materials & Methods
 A search was made in Medline, CINAHL, PubMed, ISI Web of Science and 
Google Scholar from 1995 to February 2011. The outcomes measured in the 
review were classified to origins, proliferation, and migration of new neurons, 
and neurogenesis in CP.
Results
According to the review of articles, neurogenesis persists in specific brain 
regions throughout lifetime and can be enhanced from endogenous progenitor 
cells residing in the subventricular zone by growth factors or neurotrophic 
factors and rehabilitation program.
Conclusion
Most of the studies have been conducted in the laboratory and on animals, 
more work is required at the basic level of stem cell biology, in the development 
of human models, and finally in well-conceived clinical trials.
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Introduction
Plasticity is derived from the Greek word plaistikos meaning to form. This 
word mentions the brain’s proficiency in learning, remembering and forgetting, 
together with its replanning and injury recovery potential (1). Plasticity involves 
the change of excitation and inhibition stability; a long-term potentiation (LTP) 
or long term depression (LTD); alteration of the neuronal membrane excitability; 
and finally anatomical changes, mainly construction of new axon terminals and 
new synapses (2).
Plasticity is a characteristic of the young human brain. Disorders and brain lesions 
such as cerebral palsy (CP) that occur during the developmental process involve 
the natural course of the brain evolution (3). CP is a disorder that influences 
movement and posture development; subsequently leading to restriction of 
activity (4). CP has been reported in 2 to 2.6 of 1000 live births in Iran (5), 
which is reasonably similar to other countries (6,7). As a result of better neonatal 
care, the survival of premature infants is increasing; therefore, CP is seen more 
often (8). Periventricular leukomalacia (PVL) injury is the cause of spastic 
diplegia, which is the most common form of CP. This defect occurs before 30-32 
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weeks (9). An increasing regional gray matter volume 
due to axonal sprouting, neuronal hypertrophy and 
neurogenesis is reported in preterm children affected by 
PVL, which may show brain plasticity (10). Therefore, 
neurogenesis is one of the neuroplasticity mechanisms 
in preterm children with PVL. Furthermore, review 
articles showed that mechanisms of neuroplasticity 
after stroke and CP consist of axonal and dendrite 
sprouting, cortical reorganization and neurogenesis 
(11). 
Nowadays, it is widely accepted that new neurons 
are formed and recruited into specific brain circuits 
probably in all adult vertebrate species, including 
humans (12). Distinct areas of the central nervous 
system (CNS) are responsible for neurogenesis in the 
adult brain; the subventricular zone (SVZ) Fig (1), the 
lining of the lateral ventricles and the subgranular zone 
(SGZ) of the dentate gyrus within the hippocampus. 
Neural stem cells (NSCs) are the source of new 
neurons in the adult brain. The NSCs, which are multi 
potent and self renewing, are regulated by a number of 
molecules and signaling pathways.
Certain areas in the brain show that adult neurogenesis 
continues throughout lifetime. Endogenous progenitor 
cells located in the subventricular zone enhance 
this neurogenesis by growth factors or neurotrophic 
factors, putting forward for consideration that this 
strategy has the potential to treat the damaged brain. 
Neural stem cells, neurogenesis, young neuron 
migration, their differentiation and death have been 
studied in the subventricular zone-olfactory bulb 
(SVZ–OB) system which has turned into an appealing 
experimental model. Furthermore, basic questions are 
mentioned regarding proliferation and migration of the 
nerve cells.

Materials & Methods 
We searched Medline, CINAHL, Pub Med, ISI 
Web of Science and Google Scholar from 1995 to 
February 2011 using a combination of terms such as 
“Neurogenesis”[Mesh], Stem cell therapy, origin, 
proliferation dynamics, and migration, brain damage, 
“Cerebral Palsy”[Mesh], children. The database 
search identified 51 articles which were retrieved for 
evaluation. Finally, the results of 48 investigations, 

including original and review articles were categorized 
based on origins, proliferation, and migration of new 
neurons, and neurogenesis in CP.

Literature Review 
There are epidemiological, clinical and review studies 
about the origins, proliferation, and migration of new 
neurons, and neurogenesis in children with CP.

Origins
The ceaseless process of producing new neurons in 
the adult SVZ mentions the possibility of neural stem 
cell existence within the germinal layer. There are a 
minimum of four types of cells in the SVZ-ependymal 
region. These cells have different morphologies, 
ultrastructures and molecular markers (13) (Fig. 1). 
Young migratory neurons (type A cells) make up 
chains which are enclosed in a sheath by astrocytes 
(type B cells). Type C cells which are more spherical 
and highly proliferative precursors are gathered 
together to create migrating A cell chains. Type E 
cells are ependymal cells that remarkably separate 
the SVZ from the ventricle cavity. B cells join with E 
cells intimately leading to occasional contact with the 
ventricle lumen. 
Subventricular zone- astrocytes from the cortex, 
cerebellum, and spinal cord can also act as stem cells 
(14) and the primary precursors for new granule 
neurons (15).
Radial astrocytes (type-B cells) are the primary 
progenitors in SGZ. They asymmetrically divide in 
order to produce type-D cells (15). After four stages 
of maturation, these intermediate progenitors (D1, D2, 
D2h and D3) finally differentiate into granular neurons 
(15, 16). Some authors called these SGZ precursors 
as neuronal progenitors instead of NSCs. The function 
of these newly generated neurons appears to play a 
fundamental role in the memory process, learning and 
depression.

Proliferation 
These cells can be proliferated by the administration 
of growth factors such as epidermal growth factor 
(EGF) (17), fibroblast growth factor (FGF) (18,19) 
or their combination (20) into the ventricle after focal 
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cerebral ischemia. Additionally, newborn neurons are 
mobilized to migrate not only toward the olfactory 
bulb (OB) along the rostral migratory stream, but 
the subependymal overexpression of brain-derived 
neurotrophic factor (BDNF) also causes neuronal 
progenitor cells to recruit into a non-neurogenic 
neostriatum (21,22). The immune system targets 
neurogenic niches and exerts a considerable effect on 
proliferation, survival, differentiation and migration of 
NSCs (23). 

Migration
In adult mice, there are millimeters of distance between 
SVZ and the BO. Doetsch and Alvarez-Buylla reported 
that “A cells, the SVZ neuroblasts, originate throughout 
most of the lateral wall of the lateral ventricle and 
traverse a complex network of interconnected paths 
before joining the rostral migratory stream (RMS)” 
(24). It has also been suggested that similar migrations 
such as migration of SVZ derived cells which is 
remarkably long may happen in the infant human brain 
which is large in contrast to mice brain. A study also 
suggested a migration from the SVZ to neocortex (25, 
26), but this migration has not been demonstrated.
A cells in adult rodent SVZ and RMS form chains by 
moving along each other (Fig. 2) (27). A cells with a long 
structure and a noticeable leading process are covered 
at the end by a growth cone (28,29). Neuroblasts move 
incrementally in chains reconstituted in vitro at mean 
speeds of 120 m/hr (28). The cellular construction 
that causes these young neurons to move at such high 
speeds is not known. Microtubule polymerization and 
depolymerization may probably have a significant 
function in both the exploratory behavior and net 
translocation happening during a step. Doublecortin, a 
protein related to microtubule has an important role in 
neuronal migration.
A cells have an outstanding growth cone and a 
principal mechanism (28) mentioning that these cells 
may use motion processes also used by growing 
axons. A process emerges from the neuron cell body. 
The forward end of the process expands to form a 
growth cone that samples the environment, contacting 
other cells and chemical cues. When the growth cone 
contacts its target cell, synaptic vesicles soon form and 

microtubules that formerly ended at the apex of the 
growth cone project to the presynaptic membrane.
Besides, during migration and types of signal trigger, 
factors secreted by astrocytes appear to enhance the 
migration of SVZ neuroblasts (30). These astrocytes 
probably play important roles such as enhancement 
of migration. The glial cells surrounding the chains 
may also help A cells to survive and/or may provide 
directional information. 

Neurogenesis in CP
Migration of thousands of young neurons (A cells) 
into the OB happens daily, but only some of them 
accomplish completely. The characteristics of neural 
stem cells include the ability to self-renew, differentiate 
into most types of neurons and glial calls and populate 
developing and degenerating regions of CNS (31).
Lesions occurring in the perinatal period cause severe 
impairment of skilled movement learning and also 
secondary disruption in the development of alpha 
motor neurons and their afferent segmental reflex 
control. Because no explicit treatment has been 
mentioned for CP due to neonatal hypoxic-ischemia 
(HI), recent research shows that using growth factors 
can have beneficial effects on ischemic brain injury 
(32-34). 
Neural stem cells and progenitors of the subventricular 
zone (SVZ) of the adult mammalian brain (35) can be 
proliferated by the administration of growth factors 
such as epidermal growth factor (EGF) (17), fibroblast 
growth factor (FGF) (18,19) or their combination 
(20,36) into the ventricle after focal cerebral ischemia. 
Likewise, adult neurogenesis persists in specific brain 
regions throughout lifetime and can be enhanced from 
endogenous progenitor cells residing in the SVZ by 
growth factors or neurotrophic factors, suggesting that 
this strategy will be able to treat the damaged brain. 
In other words, if the proliferation and differentiation 
of newly generated neurons can be directed toward 
specific functional brain regions, it may be possible to 
use the recovery of specific functions in the treatment 
of incurable neurological diseases.
Therefore, induction of striatal neurogenesis by 
the intraventricular administration of brain derived 
neurotrophic factor (BDNF) and EGF promoted 
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functional recovery in an adult animal model of 
neonatal HI brain injury and this treatment may offer 
a promising strategy for the restoration of motor 
function for adults with CP (37).
Besides, stimulation from the external environment 
could affect the plasticity process. The neural basis of 
experience-dependent processes appeared to involve 
active formation of new synaptic connections in 
response to the events providing the information to be 
stored (38). Many experiences indicated that nervous 
system optimizes neural connection during critical 
periods and lack of necessary experience during 
critical periods in human development of gross motor 
and cognition provides retardation in these areas 
(31). Perhaps using growth factors accompanied with 
rehabilitation therapy such as neurodevelopmental 
therapy (NDT) is a good option in the process of 
neurogenesis.
In this regard, transplantation of several types of stem 
cells including neural stem cells (39), multipotent 
adult progenitor cells (40,41) and mesenchymal stem 

cells (MSCs) may be beneficial in acute injuries of 
the CNS (42). Daadi et al. (2010) reported that human 
neural stem cells (hNSCs) engrafted into the ischemic 
brain enhanced axonal sprouting and the expression 
of genes involved in neurogenesis, gliogenesis and 
neurotrophic support modulated microglial response 
and improved motor function of the animals. It is 
generally believed that transplanted non-neural cells 
such as those derived from bone marrow or cord blood 
exert neurotrophic effects on ischemia-injured tissue 
and may not survive long term; (43) whereas, neural 
stem cells are thought to provide cell replacement and 
neurotrophic support (44,45).
In the injured brain, growth and differentiation factors 
released from transplanted MSCs enhance the local 
trophic milieu; subsequently, improving endogenous 
repair processes (46,47, 48). It has also been suggested 
that MSCs can differentiate into neurons and 
oligodendrocytes and thereby contribute to repair the 
injured brain (42). 
Van Velthoven et al. (2010) suggested that two MSC 

Fig 1. The anatomy of the neurogenic subventricular zone in the human brain. (A) Coronal view of the adult 
human brain showing the basal ganglia and lateral ventricles. (B) Schematic drawing depicting the cellular 

composition and cytoarchitecture of the adult human SVZ, consisting of four layers: Layer I – ependymal cell 
layer (green), Layer II – hypocellular gap, Layer III – astrocytic ribbon, containing astrocytes and migrating 

neuroblasts, Layer IV – transitional zone (From Wikipedia, the free encyclopedia)
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stimulating factor (G-CSF) promoted cell migration in 
MSCs.
In conclusion, after ischemic brain injury various 
cell types including neurons, glial and endothelial 
cells are damaged and lose their function. Effective 
regeneration of brain tissue requires all these cell 
types to be replenished and combined to form a new 
functional network. This review showed that most 
studies have been conducted in the laboratory and 
on animals, more work is required at the basic level 
of stem cell biology, in the development of human 
models, and finally in well-conceived clinical trials.

injections at 3 and 10 days after neonatal HI markedly 
improved sensorimotor function 4 weeks after the 
insult and MSC transplantation after neonatal HI 
decreased gray and white matter loss and enhanced 
neurogenesis and oligodendrogenesis. In this study, 
bone marrow from the femur and tibia of mice was 
cultured in DMEM/15% fetal bovine serum and was 
infused into the ipsilateral hemisphere (42). In another 
study on rats with left carotid artery ligation and 
hypoxic exposure, it was reported that MSC may be a 
treatment for neonatal HIE (40).
Obviously, today it is confirmed that using 
erythropoietin (EPO) with granulocyte colony-

Effectiveness of Neurogenesis in treating Children with Cerebral Palsy

Fig 2. Organization and lineage in the SVZ. Left, Cross section of the anterior rodent brain indicating the 
location of the SVZ on the lateral wall of the LV. On the right is the cellular composition and organization 
of the SVZ. Chains of young neurons (A cells, red) are surrounded by B cells (blue) that have astrocytic 

characteristics and form tube-like structures. Ependymal (E), Lateral Ventricle (LV)
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