Evaluation of expression of common genes in the intestine and peripheral blood mononuclear cells (PBMC) associated with celiac disease
Gastroenterology and Hepatology from Bed to Bench,
,
,
Page S60-S67
https://doi.org/10.22037/ghfbb.v13i1.2226
Abstract
Aim: this study was conducted to investigate expression of the genes associated with CD in the target tissue in order to estimate contribution of each single gene to development of immune response. Then, the same set of genes was evaluated in peripheral blood mononuclear cells (PBMCs).
Background: Celiac disease (CD) is a chronic systemic autoimmune disease of the small intestine occurring in genetically-susceptible individuals. There are several genes related to immune response.
Methods: For this purpose, the genes related to CD were extracted from public databases (documents of proteomics and microarray-based techniques) and were organized in a protein-protein interaction network using the search tool for retrieval of interacting genes/proteins (STRING) database as a plugin of Cytoscape software version 3.6.0. The main genes were introduced and enriched via ClueGO to find the related biochemical pathways. The network was analyzed, and the most important genes were introduced based on central indices.
Results: Among 20 CD genes as hub and bottleneck nodes, there were 7 genes with common expression in blood and intestinal tissue (C-X-C motif chemokine 11(CXCL11), granzyme B (GZMB), interleukin 15(IL-15), interleukin 17(IL-17A), interleukin 23(IL-23A), t-box transcription factor 21(TBX21), and tumor necrosis factor alpha-induced protein 3(TNFAIP3)).
Conclusion: The enriched biological process related to the central nodes of celiac network indicated that most of hub-bottleneck genes are the well-known ones involved in different types of autoimmune and inflammatory diseases.
Keywords: Celiac Disease, PBMC, Intestinal Tissue, Autoimmune, Inflammatory.
(Please cite as: Khalkhal E, Nobakht F, Haidari MH, Razaghi Z, Ghasemzad M, Sheikhan M, et al. Evaluation of expression of common genes in the intestine and peripheral blood mononuclear cells (PBMC) associated with celiac disease. Gastroenterol Hepatol Bed Bench 2020;13(Suppl.1):S60-S67).
- Celiac disease, PBMs, intestinal tissue, autoimmune, inflammatory
How to Cite
References
Zali MR, Rostami Nejad M, Rostami K, Alavian SM. Liver complications in celiac disease. Hepat Mon 2011;11:333-41.
Liu E, Lee HS, Aronsson CA, Hagopian WA, Koletzko S, Rewers MJ, et al. Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 2014;371:42-9.
Qiao SW, Sollid LM, Blumberg R. Antigen presentation in celiac disease. Curr Opin Immunol 2009;21:111-7.
Björck S, Lindehammer S, Fex M, Agardh D. Serum cytokine pattern in young children with screening detected coeliac disease. Clin Exp Immunol 2015;179:230-5.
Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Ménard S, Candalh C, et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008;205:143-54.
Kurppa K, Koskinen O, Collin P, Mäki M, Reunala T, Kaukinen K, et al. Changing phenotype of celiac disease after long-term gluten exposure. J Pediatr Gastroenterol Nutr 2008;47:500-3.
Kohlmann A, Haschke-Becher E, Wimmer B, Huber-Wechselberger A, Meyer-Monard S, Huxol H, et al. Intraplatform reproducibility and technical precision of gene expression profiling in 4 laboratories investigating 160 leukemia samples: the DACH study. Clin Chem 2008;54:1705-15.
Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol 2008;142:802-7.
Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L, Irastorza I, Elcoroaristizabal X, Jauregi-Miguel A, et al. Coregulation and modulation of NFκB-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Hum Mol Genet 2013;23:1298-310.
Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig 2015;107:686-96.
Turner J. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009;9:799.
Diosdado B, Van Bakel H, Strengman E, Franke L, Van Oort E, Mulder CJ, et al. Neutrophil recruitment and barrier impairment in celiac disease: a genomic study. Clin Gastroenterol Hepatol 2007;5:574-81.
Ge Q, Chen L, Tang M, Zhang S, Liu L, Gao L, et al. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur J Pharmacol 2018;833:50-62.
Karbalaei R, Allahyari M, Rezaei-Tavirani M, Asadzadeh-Aghdaei H, Zali MR. Protein-protein interaction analysis of Alzheimers disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenterol Hepatol Bed Bench 2018;11:27.
Ye Z, Kong Q, Han J, Deng J, Wu M, Deng H. Circular RNAs are differentially expressed in liver ischemia/reperfusion injury model. J Cell Biochem 2018;119:7397-405.
Diosdado B, Wapenaar M, Franke L, Duran K, Goerres M, Hadithi Ma, et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004;53:944-51.
Mortazavi S, Zali M, Raoufi M, Nadji M, Kowsarian P, Nowroozi A. The Prevalence of Human Papillomavirus in Cervical Cancer in Iran. Asian Pac J Cancer Prev 2002;3:69-72.
Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, et al. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med 2010;16:199-209.
Tavirani MR, Bashash D, Rostami FT, Tavirani SR, Nikzamir A, Tavirani MR, et al. Celiac disease microarray analysis based on system biology approach. Gastroenterol Hepatol Bed Bench 2018;11:216.
Bragde H, Jansson U, Fredrikson M, Grodzinsky E, Söderman JJC. Celiac disease biomarkers identified by transcriptome analysis of small intestinal biopsies. Cell Mol Life Sci 2018;75:4385-401.
Bragde H, Jansson U, Jarlsfelt I, Söderman J. Gene expression profiling of duodenal biopsies discriminates celiac disease mucosa from normal mucosa. Pediatr Res 2011;69:530.
Sangineto M, Graziano G, D’Amore S, Salvia R, Palasciano G, Sabbà C, et al. Identification of peculiar gene expression profile in peripheral blood mononuclear cells (PBMC) of celiac patients on gluten free diet. PLoS ONE 2018;13:e0197915.
Pascual V, Medrano L, López-Palacios N, Bodas A, Dema B, Fernández-Arquero M, et al. Different gene expression signatures in children and adults with celiac disease. PLoS One 2016;11:e0146276.
Cielo D, Galatola M, Fernandez-Jimenez N, De Leo L, Garcia-Etxebarria K, Loganes C, et al. Combined Analysis of Methylation and Gene Expression Profiles in separate Compartments of small Bowel Mucosa Identified Celiac Disease patients’ signatures. Sci Rep 2019;9:10020.
Galatola M, Izzo V, Cielo D, Morelli M, Gambino G, Zanzi D, et al. Gene expression profile of peripheral blood monocytes: a step towards the molecular diagnosis of celiac disease? PLoS One 2013;8:e74747.
Fernandez-Jimenez N, Santin I, Irastorza I, Plaza-Izurieta L, Castellanos-Rubio A, Vitoria JC, et al. Upregulation of KIR3DL1 gene expression in intestinal mucosa in active celiac disease. Hum Immunol 2011;72:617-20.
Castellanos-Rubio A, Caja S, Irastorza I, Fernandez-Jimenez N, Plaza-Izurieta L, Vitoria JC, et al. Angiogenesis-related gene expression analysis in celiac disease. Autoimmunity 2012;45:264-70.
Frisullo G, Nociti V, Iorio R, Patanella AK, Plantone D, Bianco A, et al. T‐bet and pSTAT‐1 expression in PBMC from coeliac disease patients: new markers of disease activity. Clin Exp Immunol 2009;158:106-14.
Salvati V, Bajaj-Elliott M, Poulsom R, Mazzarella G, Lundin K, Nilsen E, et al. Keratinocyte growth factor and coeliac disease. Gut 2001;49:176-81.
Juuti-Uusitalo K, Mäki M, Kaukinen K, Collin P, Visakorpi T, Vihinen M, et al. cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples. Autoimmun 2004;22:249-65.
Haghbin M, Rostami-Nejad M, Forouzesh F, Sadeghi A, Rostami K, Aghamohammadi E, et al. The role of CXCR3 and its ligands CXCL10 and CXCL11 in the pathogenesis of celiac disease. Medicine 2019;98:e15949.
Bragde H, Jansson U, Fredrikson M, Grodzinsky E, Söderman J. Potential blood-based markers of celiac disease. BMC Gastroenterol 2014;14:176.
Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006;55:469-77.
Myhr CB, Hulme MA, Wasserfall CH, Hong PJ, Lakshmi PS, Schatz DA, et al. The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNγ production by PBMC. J Autoimmun 2013;44:8-12.
Lahdenperä A, Ludvigsson J, Fälth-Magnusson K, Högberg L, Vaarala O. The effect of gluten-free diet on Th1–Th2–Th3-associated intestinal immune responses in celiac disease. Scand J Gastroenterol 2011;46:538-49.
Jin BJ, Lee S, Verkman A. Hollow Micropillar Array Method for High-Capacity Drug Screening on Filter-Grown Epithelial Cells. Anal Chem 2018;90:7675-81.
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki SJP. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PreeJ 2016;4:e2775.
Yokoyama S, Watanabe N, Sato N, Perera PY, Filkoski L, Tanaka T, et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 2009;106:15849-54.
DePaolo R, Abadie V, Tang F, Fehlner-Peach H, Hall J, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011;471:220.
Liu Z, Geboes K, Colpaert S, D’Haens GR, Rutgeerts P, Ceuppens J. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J Immunol 2000;164:3608-15.
Kuczyński S, Winiarska H, Abramczyk M, Szczawińska K, Wierusz-Wysocka B, Dworacka M, et al. IL-15 is elevated in serum patients with type 1 diabetes mellitus.Diabetes Res Clin Pract 2005;69:231-6.
Bernardo D, Garrote JA, Allegretti Y, León A, Gómez E, Bermejo‐Martin J, et al. Higher constitutive IL15Rα expression and lower IL‐15 response threshold in coeliac disease patients. Clin Exp Immunol 2008;154:64-73.
Harris KM, Fasano A, Mann D. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol 2010;135:430-9.
Jafari F, Hamidian M, Rezadehbashi M, Doyle M, Salmanzadeh-Ahrabi S, Derakhshan F, et al. Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Can J Infect Dis Med Microbiol. 2009;20:e56-62.
Stepkowski SM, Chen W, Ross JA, Nagy ZS, Kirken R. STAT3: an important regulator of multiple cytokine functions. Transplantation 2008;85:1372-7.
Schmitz J, Dahmen H, Grimm C, Gendo C, Müller-Newen G, Heinrich PC, et al. The cytoplasmic tyrosine motifs in full-length glycoprotein 130 have different roles in IL-6 signal transduction. J Immunol 2000;164:848-54.
Trynka G, Zhernakova A, Romanos J, Franke L, Hunt K, Turner G, et al. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. Gut 2009;58:1078-83.
Perkins N. Integrating cell-signalling pathways with NF-κB and IKK function.Nat Rev Mol Cell Biol 2007;8:49.
Alaedini A, Green P. Narrative review: celiac disease: understanding a complex autoimmune disorder. Ann Intern Med 2005;142:289-98.
Faghih M, Barartabar Z, Nasiri Z. The role of Th1 and Th17 in the pathogenesis of celiac disease. Gastroenterol Hepatol Open Access 2018;9:83-7.
- Abstract Viewed: 0 times
- PDF Downloaded: 0 times