Assessment of Liver Cancer Biomarkers
Gastroenterology and Hepatology from Bed to Bench,
,
9 December 2020
https://doi.org/10.22037/ghfbb.v13i1.2221
Abstract
Background. Liver cancer is third cause of cancer related deaths in the world. Liver cancer primarily divides into two main types, which are hepatocellular carcinoma (HC) and cholangiocarcinoma (IC). Due to the increasing number of patients with liver cancer and the high mortality rate in this disease, early diagnosis of the disease can be helpful in treatment, unfortunately most patients are diagnosed with late stages of HC.
Aim. The aim of this study is to screen and provide overview on candidate biomarkers related to primary liver cancer to introduce the critical ones.
Methods. In this study, various biomarkers related to the diagnosis of primary liver cancer have been studied from different researches. According to existing researches, biomarkers divided into different groups as blood biomarkers which classified as serum and plasma biomarkers, tissue biomarkers, microRNA biomarkers, proteomic biomarkers and altered genes in this regard.
Results. Previous researches have focused on liver cells and bile ducts, the surround cellular environment, how cells differentiate, and some other research have focused on the types of genes expressed in liver cancer. The searches for the origin of tumor cells and how they differentiate and develop were also between these studies. In all of these studies, the expression of specific proteins and genes in liver cancer has been considered.
Conclusion. According to the available sources , summarizing and concluding in this direction, we introduce biomarkers can be considered as candidates to diagnose and prognosis of different types of primary liver cancer, from different sources as blood, tissue, mic-RNA, proteom, and genes. However more investigations required to introduce a biomarker for precise detection of early liver cancer.
Key words: Hepatocellular carcinoma, Biomarker, diagnosis, prognosis , proteomics
- Hepatocellular carcinoma, Biomarker, diagnosis, prognosis , proteomics
References
1. Villanueva A, Schwartz ME, Llovet JM. Liver cancer. Mount Sinai Expert Guides: Oncology. 2019:89-100.
2. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nature reviews Gastroenterology & hepatology. 2010;7(8):448.
3. Karagozian R, Derdák Z, Baffy G. Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism. 2014;63(5):607-17.
4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine. 2008;359(4):378-90.
5. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clinical cancer research. 2014;20(8):2072-9.
6. Zucman-Rossi J, Villanueva A, Nault J-C, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226-39. e4.
7. Torrecilla S, Sia D, Harrington AN, Zhang Z, Cabellos L, Cornella H, et al. Trunk mutational events present minimal intra-and inter-tumoral heterogeneity in hepatocellular carcinoma. J Hepatol. 2017;67(6):1222-31.
8. Chan L-K, Ng IO-L. Proteomic profiling in liver cancer: another new page. Translational Gastroenterology and Hepatology. 2019;4.
9. Lee SC, Tan HT, Chung MCM. Prognostic biomarkers for prediction of recurrence of hepatocellular carcinoma: current status and future prospects. World Journal of Gastroenterology: WJG. 2014;20(12):3112.
10. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257-61.
11. Bray F. Ferlay j, Soerjomataram I, Siegel RL, Torre LA and jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
12. Gera S, Ettel M, Acosta-Gonzalez G, Xu R. Clinical features, histology, and histogenesis of combined hepatocellular-cholangiocarcinoma. World journal of hepatology. 2017;9(6):300.
13. Saffroy R, Pham P, Reffas M, Takka M, Lemoine A, Debuire B. New perspectives and strategy research biomarkers for hepatocellular carcinoma. Clinical Chemistry and Laboratory Medicine (CCLM). 2007;45(9):1169-79.
14. Zhou Y-M, Yang J-M, Li B, Yin Z-F, Xu F, Wang B, et al. Clinicopathologic characteristics of intrahepatic cholangiocarcinoma in patients with positive serum a-fetoprotein. World Journal of Gastroenterology: WJG. 2008;14(14):2251.
15. Yin X, Zhang B-H, Qiu S-J, Ren Z-G, Zhou J, Chen X-H, et al. Combined hepatocellular carcinoma and cholangiocarcinoma: clinical features, treatment modalities, and prognosis. Ann Surg Oncol. 2012;19(9):2869-76.
16. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and α-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68(5):1451-61.
17. Li R, Yang D, Tang C-L, Cai P, Ma K-s, Ding S-Y, et al. Combined hepatocellular carcinoma and cholangiocarcinoma (biphenotypic) tumors: clinical characteristics, imaging features of contrast-enhanced ultrasound and computed tomography. BMC Cancer. 2016;16(1):158.
18. Bertino G, Ardiri A, Malaguarnera M, Malaguarnera G, Bertino N, Calvagno GS, editors. Hepatocellualar carcinoma serum markers. Semin Oncol; 2012: Elsevier.
19. Tamura Y, Igarashi M, Kawai H, Suda T, Satomura S, Aoyagi Y. Clinical advantage of highly sensitive on-chip immunoassay for fucosylated fraction of alpha-fetoprotein in patients with hepatocellular carcinoma. Dig Dis Sci. 2010;55(12):3576-83.
20. Choi J, Kim GA, Han S, Lee W, Chun S, Lim YS. Longitudinal assessment of three serum biomarkers to detect very early‐stage hepatocellular carcinoma. Hepatology. 2019;69(5):1983-94.
21. Hagiwara S, Kudo M, Kawasaki T, Nagashima M, Minami Y, Chung H, et al. Prognostic factors for portal venous invasion in patients with hepatocellular carcinoma. J Gastroenterol. 2006;41(12):1214-9.
22. Hu B, Tian X, Sun J, Meng X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. International journal of molecular sciences. 2013;14(12):23559-80.
23. Song P, Tobe RG, Inagaki Y, Kokudo N, Hasegawa K, Sugawara Y, et al. The management of hepatocellular carcinoma around the world: a comparison of guidelines from 2001 to 2011. Liver International. 2012;32(7):1053-63.
24. Zhang Y-S, Chu J-H, Cui S-X, Song Z-Y, Qu X-J. Des-γ-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma. Cell Physiol Biochem. 2014;34(3):903-15.
25. Chen J, Wu G, Li Y. Evaluation of serum des-gamma-carboxy prothrombin for the diagnosis of hepatitis B virus-related hepatocellular carcinoma: a meta-analysis. Dis Markers. 2018;2018.
26. Masuzaki R, Karp SJ, Omata M, editors. New serum markers of hepatocellular carcinoma. Semin Oncol; 2012: Elsevier.
27. Wei C, Yang X, Liu N, Geng J, Tai Y, Sun Z, et al. Tumor microenvironment regulation by the endoplasmic reticulum stress transmission mediator Golgi protein 73 in mice. Hepatology. 2019;70(3):851-70.
28. Liu Y, Zhang X, Zhou S, Shi J, Xu Y, He J, et al. Knockdown of Golgi phosphoprotein 73 blocks the trafficking of matrix metalloproteinase‐2 in hepatocellular carcinoma cells and inhibits cell invasion. J Cell Mol Med. 2019;23(4):2399-409.
29. Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59(12):1687-93.
30. Mintz K, Waidely E, Zhou Y, Peng Z, Al-Youbi AO, Bashammakh AS, et al. Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Anal Chim Acta. 2018;1041:114-21.
31. El-Tayeh SF, Hussein TD, El-Houseini ME, Amer MA, El-Sherbini M, Elshemey WM. Serological biomarkers of hepatocellular carcinoma in Egyptian patients. Dis Markers. 2012;32(4):255-63.
32. Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Alpha-l-fucosidase immunoassay for early detection of hepatocellular carcinoma. Anal Chem. 2017;89(17):9459-66.
33. Yamada T, Nakanishi Y, Okamura K, Tsuchikawa T, Nakamura T, Noji T, et al. Impact of serum carbohydrate antigen 19‐9 level on prognosis and prediction of lymph node metastasis in patients with intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol. 2018;33(9):1626-33.
34. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31(9):1188-95.
35. Ying X, Zhao Y, Wang J-L, Zhou X, Zhao J, He C-C, et al. Serum anti-osteopontin autoantibody as a novel diagnostic and prognostic biomarker in patients with hepatocellular carcinoma. Oncol Rep. 2014;32(4):1550-6.
36. Shang S, Plymoth A, Ge S, Feng Z, Rosen HR, Sangrajrang S, et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology. 2012;55(2):483-90.
37. Zhu Y, Yang J, Xu D, Gao X-M, Zhang Z, Hsu JL, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68(9):1653-66.
38. Carr BI, Kanke F, Wise M, Satomura S. Clinical evaluation of Lens culinaris agglutinin-reactive α-fetoprotein and des-γ-carboxy prothrombin in histologically proven hepatocellular carcinoma in the United States. Dig Dis Sci. 2007;52(3):776-82.
39. Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, et al. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer. 2016;138(8):1824-34.
40. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology. 2003;37(1):198-207.
41. Kang GH, Lee BS, Lee ES, Kim SH, Lee HY, Kang DY. Prognostic significance of p53, mTOR, c-Met, IGF-1R, and HSP70 overexpression after the resection of hepatocellular carcinoma. Gut and liver. 2014;8(1):79.
42. Shin E, Ryu HS, Kim S-H, Jung H, Jang J-J, Lee K. The clinicopathological significance of heat shock protein 70 and glutamine synthetase expression in hepatocellular carcinoma. Journal of hepato-biliary-pancreatic sciences. 2011;18(4):544-50.
43. Ibrahim TR, Abdel-Raouf SM. Immunohistochemical study of Glypican-3 and HepPar-1 in differentiating hepatocellular carcinoma from metastatic carcinomas in FNA of the liver. Pathology & Oncology Research. 2015;21(2):379-87.
44. S‐Y Leong A, Sormunen RT, Tsui W, Liew C. Hep Par 1 and selected antibodies in the immunohistological distinction of hepatocellular carcinoma from cholangiocarcinoma, combined tumours and metastatic carcinoma. Histopathology. 1998;33(4):318-24.
45. Kakar S, Gown AM, Goodman ZD, Ferrell LD. Best practices in diagnostic immunohistochemistry: hepatocellular carcinoma versus metastatic neoplasms. Arch Pathol Lab Med. 2007;131(11):1648-54.
46. Nishida T, Kataoka H. Glypican 3-targeted therapy in hepatocellular carcinoma. Cancers (Basel). 2019;11(9):1339.
47. Chen C, Huang X, Ying Z, Wu D, Yu Y, Wang X, et al. Can glypican-3 be a disease-specific biomarker? Clinical and translational medicine. 2017;6(1):18.
48. Shirakawa H, Kuronuma T, Nishimura Y, Hasebe T, Nakano M, Gotohda N, et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int J Oncol. 2009;34(3):649-56.
49. Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP and hedgehog in liver cancer. Front Oncol. 2019;9:708.
50. Liu H, Li P, Zhai Y, Qu C-F, Zhang L-J, Tan Y-F, et al. Diagnostic value of glypican-3 in serum and liver for primary hepatocellular carcinoma. World journal of gastroenterology: WJG. 2010;16(35):4410.
51. Lagana SM, Moreira RK, Remotti HE, Bao F. Glutamine synthetase, heat shock protein-70, and glypican-3 in intrahepatic cholangiocarcinoma and tumors metastatic to liver. Appl Immunohistochem Mol Morphol. 2013;21(3):254-7.
52. Yan BC, Gong C, Song J, Krausz T, Tretiakova M, Hyjek E, et al. Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. The American journal of surgical pathology. 2010;34(8):1147.
53. Fujiwara M, Kwok S, Yano H, Pai RK. Arginase‐1 is a more sensitive marker of hepatic differentiation than HepPar‐1 and glypican‐3 in fine‐needle aspiration biopsies. Cancer Cytopathol. 2012;120(4):230-7.
54. Timek DT, Shi J, Liu H, Lin F. Arginase-1, HepPar-1, and Glypican-3 are the most effective panel of markers in distinguishing hepatocellular carcinoma from metastatic tumor on fine-needle aspiration specimens. Am J Clin Pathol. 2012;138(2):203-10.
55. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705.
56. Ryu HS, Lee K, Shin E, Kim SH, Jing J, Jung HY, et al. Comparative analysis of immunohistochemical markers for differential diagnosis of hepatocelluar carcinoma and cholangiocarcinoma. Tumori Journal. 2012;98(4):478-84.
57. Liu LZ, Yang LX, Zheng BH, Dong PP, Liu XY, Wang ZC, et al. CK7/CK19 index: a potential prognostic factor for postoperative intrahepatic cholangiocarcinoma patients. J Surg Oncol. 2018;117(7):1531-9.
58. Dal Bello B, Rosa L, Campanini N, Tinelli C, Viera FT, D'Ambrosio G, et al. Glutamine synthetase immunostaining correlates with pathologic features of hepatocellular carcinoma and better survival after radiofrequency thermal ablation. Clin Cancer Res. 2010;16(7):2157-66.
59. Nguyen TB, Roncalli M, Di Tommaso L, Kakar S. Combined use of heat-shock protein 70 and glutamine synthetase is useful in the distinction of typical hepatocellular adenoma from atypical hepatocellular neoplasms and well-differentiated hepatocellular carcinoma. Mod Pathol. 2016;29(3):283-92.
60. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43(5):464-9.
61. Sung W-K, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765-9.
62. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23(9):1422-33.
63. Network CGAR. Electronic Address WBE, Cancer Genome Atlas Research N (2017) Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell.169(7):1327-41.
64. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nature genetics. 2015;47(5):505-11.
65. Wheeler DA, Roberts LR, Network CGAR. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327.
66. Ho DW, Chan LK, Chiu YT, Xu IM, Poon RT, Cheung TT, et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut. 2017;66(8):1496-506.
67. Moon S-H, Huang C-H, Houlihan SL, Regunath K, Freed-Pastor WA, Morris IV JP, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019;176(3):564-80. e19.
68. Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69(1):177-86.
69. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179(2):561-77. e22.
70. Ding J, Kuo M-L, Su L, Xue L, Luh F, Zhang H, et al. Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers. Carcinogenesis. 2017;38(5):519-31.
71. Molotkov A, Deltour L, Foglio MH, Cuenca AE, Duester G. Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J Biol Chem. 2002;277(16):13804-11.
72. Teng L, Wang K, Liu Y, Ma Y, Chen W, Bi L. Based on integrated bioinformatics analysis identification of biomarkers in hepatocellular carcinoma patients from different regions. BioMed research international. 2019;2019.
73. Liu L, Wu J, Guo Y, Xie W, Chen B, Zhang Y, et al. Overexpression of FoxM1 predicts poor prognosis of intrahepatic cholangiocarcinoma. Aging (Albany NY). 2018;10(12):4120.
74. Dibb M, Han N, Choudhury J, Hayes S, Valentine H, West C, et al. The FOXM1-PLK1 axis is commonly upregulated in oesophageal adenocarcinoma. Br J Cancer. 2012;107(10):1766-75.
75. Zeng J, Wang L, Li Q, Li W, Björkholm M, Jia J, et al. FoxM1 is up‐regulated in gastric cancer and its inhibition leads to cellular senescence, partially dependent on p27kip1. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2009;218(4):419-27.
76. Hu G, Yan Z, Zhang C, Cheng M, Yan Y, Wang Y, et al. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. J Exp Clin Cancer Res. 2019;38(1):188.
77. Seimiya M, Tomonaga T, Matsushita K, Sunaga M, Oh‐ishi M, Kodera Y, et al. Identification of novel immunohistochemical tumor markers for primary hepatocellular carcinoma; clathrin heavy chain and formiminotransferase cyclodeaminase. Hepatology. 2008;48(2):519-30.
78. Yeoman AD, Al‐Chalabi T, Karani JB, Quaglia A, Devlin J, Mieli‐Vergani G, et al. Evaluation of risk factors in the development of hepatocellular carcinoma in autoimmune hepatitis: implications for follow‐up and screening. Hepatology. 2008;48(3):863-70.
79. Sheng Y, Wei J, Zhang Y, Gao X, Wang Z, Yang J, et al. Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int J Cancer. 2019;144(10):2440-52.
80. Singh G, Yoshida EM, Rathi S, Marquez V, Kim P, Erb SR, et al. Biomarkers for hepatocellular cancer. World Journal of Hepatology. 2020;12(9):558.
81. Huang W. MicroRNAs: biomarkers, diagnostics, and therapeutics. Bioinformatics in MicroRNA Research: Springer; 2017. p. 57-67.
82. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29(36):4781-8.
83. Huang JT, Liu SM, Ma H, Yang Y, Zhang X, Sun H, et al. Systematic review and meta‐analysis: Circulating miRNAs for diagnosis of hepatocellular carcinoma. Journal of cellular physiology. 2016;231(2):328-35.
84. Tsai W-C, Hsu S-D, Hsu C-S, Lai T-C, Chen S-J, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of clinical investigation. 2012;122(8):2884-97.
85. Amr KS, Atia HAE, Elbnhawy RAE, Ezzat WM. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma. Genes & diseases. 2017;4(4):215-21.
86. Moshiri F, Salvi A, Gramantieri L, Sangiovanni A, Guerriero P, De Petro G, et al. Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget. 2018;9(20):15350.
87. Tian X-P, Wang C-Y, Jin X-H, Li M, Wang F-W, Huang W-J, et al. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 2019;9(7):1965.
88. Takigawa Y, Brown A. Wnt signaling in liver cancer. Current drug targets. 2008;9(11):1013-24.
89. Armengol C, Cairo S, Fabre M, Buendia M. Wnt signaling and hepatocarcinogenesis: the hepatoblastoma model. The international journal of biochemistry & cell biology. 2011;43(2):265-70.
90. Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R, Gaunitz F. Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Molecular cancer. 2008;7(1):1-9.
91. Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2–p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discovery. 2020;6(1):1-14.
92. García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World journal of gastroenterology. 2018;24(33):3695.
93. Gao W, Kim H, Ho M. Human monoclonal antibody targeting the heparan sulfate chains of glypican-3 inhibits HGF-mediated migration and motility of hepatocellular carcinoma cells. PloS one. 2015;10(9):e0137664.
94. Sherman M. How to improve HCC surveillance outcomes. JHEP Reports. 2019;1(6):460-7.
95. Tzartzeva K, Singal AG. Testing for AFP in combination with ultrasound improves early liver cancer detection. Taylor & Francis; 2018.
96. Han C, Gao L, Zhao L, Sheng Q, Zhang C, An Z, et al. Immunohistochemistry detects increased expression of aldo-keto reductase family 1 member b10 (AKR1B10) in early-stage hepatocellular carcinoma. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2018;24:7414.
97. Wan H-G, Xu H, Gu Y-M, Wang H, Xu W, Zu M-H. Comparison osteopontin vs AFP for the diagnosis of HCC: a meta-analysis. Clinics and research in hepatology and gastroenterology. 2014;38(6):706-14.
98. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver International. 2015;35(9):2155-66.
99. Gao YX, Yang TW, Yin JM, Yang PX, Kou BX, Chai MY, et al. Progress and prospects of biomarkers in primary liver cancer. International Journal of Oncology. 2020;57(1):54-66.
100. Calderaro J, Couchy G, Imbeaud S, Amaddeo G, Letouzé E, Blanc J-F, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. Journal of hepatology. 2017;67(4):727-38.
101. Wang P, Dong Q, Zhang C, Kuan P-F, Liu Y, Jeck WR, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32(25):3091-100.
- Abstract Viewed: 0 times