The role of artificial intelligence in colon polyps detection
Gastroenterology and Hepatology from Bed to Bench,
Vol. 13 No. 3 (2020),
2 June 2020
,
Page 191-199
https://doi.org/10.22037/ghfbb.v13i3.1866
Abstract
Over the past few decades, artificial intelligence (AI) has evolved dramatically and is believed to have a significant impact on all aspects of technology and daily life. The use of AI in the healthcare system has been rapidly growing, owing to the large amount of data. Various methods of AI including machine learning, deep learning and convolutional neural network (CNN) have been used in diagnostic imaging, which have helped physicians in the accurate diagnosis of diseases and determination of appropriate treatment for them. Using and collecting a huge number of digital images and medical records has led to the creation of big data over a time period. Currently, considerations regarding the diagnosis of various presentations in all endoscopic procedures and imaging findings are solely handled by endoscopists. Moreover, AI has shown to be highly effective in the field of gastroenterology in terms of diagnosis, prognosis, and image processing. Herein, this review aimed to discuss different aspects of AI use for early detection and treatment of gastroenterology diseases.
Keywords: Artificial intelligence, Deep learning, Polyp detection, Image processing, Computer-assisted, Colonoscopy.
(Please cite as: Rasouli P, Dooghaie Moghadam A, Aghajanpoor Pasha M, Asadzadeh Aghdaei H, Mehrvar A, Iravani Sh, et al. The role of artificial intelligence in colon polyps detection. Gastroenterol Hepatol Bed Bench 2020;13(3):191-199).
- artificial intelligence
- deep learning
- polyp detection
- image processing
- computer-assisted
- colonoscopy.
How to Cite
References
Azadeh S, Moghimi-Dehkordi B, Fatem SR, Pourhoseingholi MA, Ghiasi S, Zali MR. Colorectal cancer in Iran: an epidemiological study. Asian Pac J Cancer Prev 2008;9:123-6.
Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging 2016;11:967-76.
Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol 2009;4:343-64.
Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 2008;58:130-60.
Kim NH, Jung YS, Jeong WS, Yang HJ, Park SK, Choi K, et al. Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies. Intest Res 2017;15:411-8.
Ahn SB, Han DS, Bae JH, Byun TJ, Kim JP, Eun CS. The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies. Gut Liver 2012;6:64-70.
Macari M, Bini EJ, Jacobs SL, Lui YW, Laks S, Milano A, et al. Significance of missed polyps at CT colonography. AJR Am J Roentgenol 2004;183:127-34.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44-56.
Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, et al. Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 2019;29:1616-24.
Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol 2019;25:1666-83.
Yazdani Charati J, Janbabaei G, Alipour N, Mohammadi S, Ghorbani Gholiabad S, Fendereski A. Survival prediction of gastric cancer patients by Artificial Neural Network model. Gastroenterol Hepatol Bed Bench 2018;11:110-7.
Krupinski EA. Current perspectives in medical image perception. Atten Percept Psychophys 2010;72:1205-17.
Travis SP, Schnell D, Feagan BG, Abreu MT, Altman DG, Hanauer SB, et al. The Impact of Clinical Information on the Assessment of Endoscopic Activity: Characteristics of the Ulcerative Colitis Endoscopic Index Of Severity [UCEIS]. J Crohns Colitis 2015;9:607-16.
Bossuyt P, Vermeire S, Bisschops R. Scoring endoscopic disease activity in IBD: artificial intelligence sees more and better than we do. Gut 2020;69:788-9.
Russell SJ, Norvig P. Artificial intelligence: a modern approach. 2016.
Bini SA. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J Arthroplasty 2018;33:2358-61.
Murphy KP. Machine learning: a probabilistic perspective. Cambridge, Mass.: MIT Press; 2013.
Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng 2017;1.
Ozawa T, Ishihara S, Fujishiro M, Saito H, Kumagai Y, Shichijo S, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc 2019;89:416-21.
Zezos P, Borowski K, Bajaj G, Boland K, Sheasgreen C, Tessolini JM, et al. 439 - Toward Computer-Based Automated Mayo Score Classification in Ulcerative Colitis through Classical and Deep Machine Learning. Gastroenterology 2018;154:S99-100.
Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 2019;89:806-15.
Bibi H, Nutman A, Shoseyov D, Shalom M, Peled R, Kivity S, et al. Prediction of emergency department visits for respiratory symptoms using an artificial neural network. Chest 2002;122:1627-32.
Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet 1995;346:1075-9.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016;316:2402-10.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;546:686.
Bossuyt P, Nakase H, Vermeire S, Willekens H, Ikemoto Y, makino T, et al. 436 - Automated Digital Calculation of Endoscopic Inflammation in Ulcerative Colitis: Results of the Red Density Study. Gastroenterology 2018;154:S98-9.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436.
Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 2019;89:25-32.
Danaee P, Ghaeini R, Hendrix DA. A deep learning approach for cancer detection and relevant gene identification. Pac Symp Biocomput 2017;22:219-29.
Takiyama H, Ozawa T, Ishihara S, Fujishiro M, Shichijo S, Nomura S, et al. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Sci Rep 2018;8:7497.
Wang H, Liang Z, Li LC, Han H, Song B, Pickhardt PJ, et al. An adaptive paradigm for computer-aided detection of colonic polyps. Phys Med Biol 2015;60:7207-28.
Piardi T, Lhuaire M, Bruno O, Memeo R, Pessaux P, Kianmanesh R, et al. Vascular complications following liver transplantation: A literature review of advances in 2015. World J Hepatol 2016;8:36-57.
Billah M, Waheed S, Rahman MM. An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features. Int J Biomed Imaging 2017;2017:9545920.
Klare P, Sander C, Prinzen M, Haller B, Nowack S, Abdelhafez M, et al. Automated polyp detection in the colorectum: a prospective study (with videos). Gastrointest Endosc 2019;89:576-82.
Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng 2018;2:741-8.
Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study. Ann Intern Med 2018;169:357-66.
Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018;155:1069-78.
Moylan S, Armstrong J, Diaz-Saldano D, Saker M, Yerkes EB, Lindgren BW. Are abdominal x-rays a reliable way to assess for constipation? J Urol 2010;184:1692-8.
Wyatt CL, Ge Y, Vining DJ. Automatic segmentation of the colon for virtual colonoscopy. Comput Med Imaging Graph 2000;24:1-9.
Franaszek M, Summers RM, Pickhardt PJ, Choi JR. Hybrid segmentation of colon filled with air and opacified fluid for CT colonography. IEEE Trans Med Imaging 2006;25:358-68.
Lu L, Zhao J. An improved method of automatic colon segmentation for virtual colon unfolding. Comput Methods Programs Biomed 2013;109:1-12.
Bert A, Dmitriev I, Agliozzo S, Pietrosemoli N, Mandelkern M, Gallo T, et al. An automatic method for colon segmentation in CT colonography. Comput Med Imaging Graph 2009;33:325-31.
Wyatt CL, Ge Y, Vining DJ. Segmentation in virtual colonoscopy using a geometric deformable model. Comput Med Imaging Graph 2006;30:17-30.
Losnegard A, Hodneland E, Lundervold A, Hysing LB, Muren LP. Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method. Phys Med Biol 2010;55:5569-84.
Bielen D, Kiss G. Computer-aided detection for CT colonography: update 2007. Abdom Imaging 2007;32:571-81.
Pritchard SE, Marciani L, Garsed KC, Hoad CL, Thongborisute W, Roberts E, et al. Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil 2014;26:124-30.
Iorio M, Spalletta G, Chiapponi C, Luccichenti G, Cacciari C, Orfei MD, et al. White matter hyperintensities segmentation: a new semi-automated method. Front Aging Neurosci 2013;5:76.
Bartko JJ. Measurement and reliability: statistical thinking considerations. Schizophr Bull 1991;17:483-9.
Haas S, Brock C, Krogh K, Gram M, Nissen TD, Lundby L, et al. Cortical evoked potentials in response to rapid balloon distension of the rectum and anal canal. Neurogastroenterol Motil 2014;26:862-73.
Oommen J, Oto A. Contrast-enhanced MRI of the small bowel in Crohn's disease. Abdom Imaging 2011;36:134-41.
Tielbeek JA, Vos FM, Stoker J. A computer-assisted model for detection of MRI signs of Crohn's disease activity: future or fiction? Abdom Imaging 2012;37:967-73.
Sandberg TH, Nilsson M, Poulsen JL, Gram M, Frokjaer JB, Ostergaard LR, et al. A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging. Abdom Imaging 2015;40:2232-41.
Pritchard SE, Garsed KC, Hoad CL, Lingaya M, Banwait R, Thongborisute W, et al. Effect of experimental stress on the small bowel and colon in healthy humans. Neurogastroenterol Motil 2015;27:542-9.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87-97.
Mori Y, Kudo SE. Detecting colorectal polyps via machine learning. Nat Biomed Eng 2018;2:713-4.
Vinsard DG, Mori Y, Misawa M, Kudo SE, Rastogi A, Bagci U, et al. Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointest Endosc 2019;90:55-63.
Maeda Y, Kudo SE, Mori Y, Misawa M, Ogata N, Sasanuma S, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc 2019;89:408-15.
Coiera E, Kocaballi B, Halamka J, Laranjo L. The digital scribe. NPJ Digit Med 2018;1:58.
Cabitza F, Rasoini R, Gensini GF. Unintended Consequences of Machine Learning in Medicine. JAMA 2017;318:517-8.
Syed AB, Zoga AC. Artificial Intelligence in Radiology: Current Technology and Future Directions. Semin Musculoskelet Radiol 2018;22:540-5.
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer 2018;18:500-10.
Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018;21:653-60.
Kubota K, Kuroda J, Yoshida M, Ohta K, Kitajima M. Medical image analysis: computer-aided diagnosis of gastric cancer invasion on endoscopic images. Surg Endosc 2012;26:1485-9.
Bae HJ, Kim CW, Kim N, Park B, Kim N, Seo JB, et al. A Perlin Noise-Based Augmentation Strategy for Deep Learning with Small Data Samples of HRCT Images. Sci Rep 2018;8:17687.
Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. Deep learning in spiking neural networks. Neural Netw 2019;111:47-63.
Pace F, Buscema M, Dominici P, Intraligi M, Baldi F, Cestari R, et al. Artificial neural networks are able to recognize gastro-oesophageal reflux disease patients solely on the basis of clinical data. Eur J Gastroenterol Hepatol 2005;17:605-10.
Mori Y, Kudo SE, Wakamura K, Misawa M, Ogawa Y, Kutsukawa M, et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest Endosc 2015;81:621-9.
Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, Raytchev B, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 2016;83:643-9.
Misawa M, Kudo SE, Mori Y, Nakamura H, Kataoka S, Maeda Y, et al. Characterization of Colorectal Lesions Using a Computer-Aided Diagnostic System for Narrow-Band Imaging Endocytoscopy. Gastroenterology 2016;150:1531-2.
Mori Y, Kudo SE, Chiu PW, Singh R, Misawa M, Wakamura K, et al. Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy 2016;48:1110-8.
Byrne MF, Chapados N, Soudan F, Oertel C, Linares Perez M, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019;68:94-100.
Komeda Y, Handa H, Watanabe T, Nomura T, Kitahashi M, Sakurai T, et al. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience. Oncology 2017;93:30-4.
Zhang R, Zheng Y, Mak TW, Yu R, Wong SH, Lau JY, et al. Automatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features From Nonmedical Domain. IEEE J Biomed Health Inform 2017;21:41-7.
Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HH, Tseng VS. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis. Gastroenterology 2018;154:568-75.
Ichimasa K, Kudo SE, Mori Y, Misawa M, Matsudaira S, Kouyama Y, et al. Correction: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer. Endoscopy 2018;50:C2.
Balyen L, Peto T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac J Ophthalmol 2019;8:264-72.
Djinbachian R, Dube AJ, von Renteln D. Optical Diagnosis of Colorectal Polyps: Recent Developments. Curr Treat Options Gastroenterol 2019;17:99-114.
- Abstract Viewed: 81 times
- PDF Downloaded: 36 times