Study on the presence of resistant diarrheagenic pathotypes in Escherichia coli isolated from patients with urinary tract infection
Gastroenterology and Hepatology from Bed to Bench,
Vol. 12 No. 4 (2019),
1 September 2019
,
Page 348-357
https://doi.org/10.22037/ghfbb.v12i4.1690
Abstract
Aim: This article aimed to analyze the diarrheagenic potential of E. coli isolated from urinary tract infection (UTI) and to recognize the presence of antibiotic resistance genes.
Background: The marked genome plasticity of Escherichia coli has allowed the emergence of resistant pathogenic strains displaying an unusual arrangement of genes.
Methods: In this cross-sectional study, 110 E. coli were isolated from patients with the symptoms of UTI in Sanandaj, west of Iran between July and September - 2015. The isolates were examined by the disk diffusion method for antibiotic susceptibility test and by polymerase chain reaction for the presence of genes characteristic of diarrheagenic E. coli (DEC), Uropathogenic E. coli (UPEC) virulence genes, extended-spectrum ?-lactamase blaCTX-M and plasmid-mediated quinolone resistance determinants, qnrA, qnrB, and qnrS.
Results: The most and the least effective antibiotics were nitrofurantoin and cefotaxime (96.4% and 27.3% sensitivity, respectively). Of the 110 UTI isolates, 57.3% carried diarrheagenic genes. The bundle-forming pilus bfpA was the most prevalent diarrheagenic gene (39.1%). The most commonly detected DEC pathotype was enterotoxigenic E. coli (-ETEC, 12.7%). All the pathotypes carried the blaCTX-M and qnr. The -UPEC hly hemolysin and pap adhesin genes were mainly detected among ETEC isolates
Conclusion: Our results indicated the presence of resistant diarrheagenic pathotypes in UTI-associated E. coli. Such isolates may have the capacity of causing both extraintestinal and intestinal infections. Based on our knowledge, this is the first report of the presence of qnr in ETEC from urine.
Keywords: Diarrheagenic Escherichia coli, Resistance, Urinary tract infection, Virulence factors.
(Please cite as Derakhshan S, Farhadifar F, Roshani D, Ahmadi A, Haghi F. Study on the presence of resistant diarrheagenic pathotypes in Escherichia coli isolated from patients with urinary tract infection. Gastroenterol Hepatol Bed Bench 2019;12(4):348-357).
- Diarrheagenic Escherichia coli
- Resistance
- Urinary tract infection
- Virulence factors
How to Cite
References
Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. International journal of nephrology. 2012;2012.
Regua‐Mangia AH, Irino K, da Silva Pacheco R, Pimentel Bezerra RM, Santos Périssé AR, Teixeira LM. Molecular characterization of uropathogenic and diarrheagenic Escherichia coli pathotypes. Journal of basic microbiology. 2010;50(S1):S107-S15.
Haghi F, Zeighami H, Hajiahmadi F, Khoshvaght H, Bayat M. Frequency and antimicrobial resistance of diarrhoeagenic Escherichia coli from young children in Iran. Journal of medical microbiology. 2014;63(3):427-32.
Abe CM, Salvador FA, Falsetti IN, Vieira MA, Blanco J, Blanco JE, et al. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunology & Medical Microbiology. 2008;52(3):397-406.
Lee J, Subhadra B, Son YJ, Kim D, Park H, Kim J, et al. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Letters in applied microbiology. 2016;62(1):84-90.
Jadhav S, Hussain A, Devi S, Kumar A, Parveen S, Gandham N, et al. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. PloS one. 2011;6(3):e18063.
Jafari F, Hamidian M, Rezadehbashi M, Doyle M, Salmanzadeh-ahrabi S, Derakhshan F, et al. Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Canadian journal of infectious diseases and medical microbiology. 2009;20(3):e56-e62.
Odeh R, Kelkar S, Hujer A, Bonomo R, Schreckenberger P, Quinn JP. Broad resistance due to plasmid-mediated AmpC β-lactamases in clinical isolates of Escherichia coli. Clinical Infectious Diseases. 2002;35(2):140-5.
Karaca Y, Coplu N, Gozalan A, Oncul O, Citil BE, Esen B. Co-trimoxazole and quinolone resistance in Escherichia coli isolated from urinary tract infections over the last 10 years. International journal of antimicrobial agents. 2005;26(1):75-7.
Amaya E, Reyes D, Vilchez S, Paniagua M, Möllby R, Nord CE, et al. Antibiotic resistance patterns of intestinal Escherichia coli isolates from Nicaraguan children. Journal of medical microbiology. 2011;60(2):216-22.
Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. Journal of Antimicrobial Chemotherapy. 2008;61(5):1003-6.
Grabe M, Bartoletti R, Bjerklund Johansen T. Guidelines on urological infections. European Association of Urology Web site. 2015.
CLSI. Performance standards for antimicrobial susceptibility testing: NCCLS; 2017.
Nguyen TV, Le Van P, Le Huy C, Gia KN, Weintraub A. Detection and characterization of diarrheagenic Escherichia coli from young children in Hanoi, Vietnam. Journal of clinical microbiology. 2005;43(2):755-60.
Aranda K, Fagundes-Neto U, Scaletsky IC. Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic Escherichia coli and Shigella spp. Journal of clinical microbiology. 2004;42(12):5849-53.
Pagani L, Dell'Amico E, Migliavacca R, D'Andrea MM, Giacobone E, Amicosante G, et al. Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. Journal of clinical microbiology. 2003;41(9):4264-9.
Robicsek A, Strahilevitz J, Sahm D, Jacoby G, Hooper D. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrobial agents and chemotherapy. 2006;50(8):2872-4.
Le Bouguenec C, Archambaud M, Labigne A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. Journal of clinical microbiology. 1992;30(5):1189-93.
Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunology & Medical Microbiology. 1995;12(2):85-90.
Toval F, Köhler C-D, Vogel U, Wagenlehner F, Mellmann A, Fruth A, et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. Journal of clinical microbiology. 2013:JCM. 02069-13.
Boll EJ, Struve C, Boisen N, Olesen B, Stahlhut SG, Krogfelt KA. Role of enteroaggregative Escherichia coli virulence factors in uropathogenesis. Infection and immunity. 2013:IAI. 01376-12.
Olesen B, Scheutz F, Andersen RL, Menard M, Boisen N, Johnston B, et al. Enteroaggregative Escherichia coli O78: H10—the cause of an outbreak of urinary tract infection. Journal of clinical microbiology. 2012:JCM. 01909-12.
Khaleque M, Akter S, Akhter H, Khan SI, Begum A. Analysis of diarrheagenic potential of uropathogenic Escherichia coli isolates in Dhaka, Bangladesh. The Journal of Infection in Developing Countries. 2017;11(06):459-69.
Toval F, Schiller R, Meisen I, Putze J, Kouzel IU, Zhang W, et al. Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli. Infection and immunity. 2014:IAI. 01701-14.
Del Canto F, Botkin DJ, Valenzuela P, Popov V, Ruiz-Perez F, Nataro JP, et al. Identification of the Coli Surface Antigen 23 (CS23), a Novel Adhesin of Enterotoxigenic Escherichia coli. Infection and immunity. 2012:IAI. 00263-12.
Jantunen ME, Saxen H, Lukinmaa S, Ala-Houhala M, Siitonen A. Genomic identity of pyelonephritogenic Escherichia coli isolated from blood, urine and faeces of children with urosepsis. Journal of medical microbiology. 2001;50(7):650-2.
Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, et al. Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. New England Journal of Medicine. 2011;365(8):709-17.
Ishii Y, Kimura S, Alba J, Shiroto K, Otsuka M, Hashizume N, et al. Extended-spectrum β-lactamase-producing shiga toxin gene (stx1)-positive Escherichia coli O26: H11: a new concern. Journal of clinical microbiology. 2005;43(3):1072-5.
Bielaszewska M, Idelevich EA, Zhang W, Bauwens A, Schaumburg F, Mellmann A, et al. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104: H4 strain. Antimicrobial agents and chemotherapy. 2012;56(6):3277-82.
Canizalez-Roman A, Flores-Villaseñor HM, Gonzalez-Nuñez E, Velazquez-Roman J, Vidal JE, Muro-Amador S, et al. Surveillance of Diarrheagenic Escherichia Coli strains isolated from diarrhea cases from children, adults and elderly at northwest of Mexico. Frontiers in microbiology. 2016;7:1924.
Herrera-León S, Llorente MT, Sánchez S. Plasmid-Mediated Quinolone Resistance in Different Diarrheagenic Escherichia coli Pathotypes Responsible for Complicated, Noncomplicated, and Traveler's Diarrhea Cases. Antimicrobial agents and chemotherapy. 2016;60(3):1950-1.
Riveros M, Riccobono E, Durand D, Mosquito S, Ruiz J, Rossolini GM, et al. Plasmid-mediated quinolone resistance genes in enteroaggregative Escherichia coli from infants in Lima, Peru. International journal of antimicrobial agents. 2012;39(6):540-2.
Franz E, Veenman C, Van Hoek AH, de Roda Husman A, Blaak H. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Scientific reports. 2015;5:14372.
- Abstract Viewed: 192 times
- PDF Downloaded: 124 times