Development of experimental fibrotic liver diseases animal model by Carbon Tetracholoride
Gastroenterology and Hepatology from Bed to Bench,
Vol. 10 No. Supplement 1 (2017),
26 Dey 2017
,
Page S122-S128
https://doi.org/10.22037/ghfbb.v0i0.1269
Abstract
Aim: This study is presenting an effective method of inducing liver fibrosis by CCL4 as a toxin in two different breeds of rat models.
Background: Liver fibrosis is a result of inflammation and liver injury caused by wound healing responses which ultimately lead to liver failure. Consequently, after liver fibrosis, the progression will be continued to liver cirrhosis and at the end stage hepatocellular carcinoma (HCC). Many studies have demonstrated that one of the most important causes of liver fibrosis is Non-alcoholic steatohepatitis (NASH). Fibrotic Liver is affected by an excessive accumulation of extracellular matrix (ECM) proteins like collagen and ?-SMA.
Methods: In two different experiments, male Vistar, and Sprague Dawley Rat models ranging from 200±60, corresponding to an age of approximately 10 weeks were utilized in order to induce CCL4 treated liver fibrosis.
Results: After 6 weeks of CCL4 injection, different tests have been carried out to verify the liver fibrosis including serum markers such as Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), molecular tests containing, laminin and ?-SMA and also pathological observation by Hematoxylin and eosin staining in both fibrosis and control group.
Conclusion: The results of Pathology and Real-time PCR showed that fibrosis was induced much more effectively in Sprague Dawley rat model compared with Wistar rats.
- Liver Fibrosis
- CCL4
- Animal Model
How to Cite
References
A. Takaki, D. Kawai, and K. Yamamoto, “Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH),” Int. J. Mol. Sci., vol. 15, no. 5, pp. 7352–7379, 2014.
R. Bataller and D. Brenner, “Liver fibrosis,” J. Clin. Invest., vol. 115, no. 2, pp. 209–218, 2005.
F. Parvaiz, S. Manzoor, H. Tariq, F. Javed, K. Fatima, and I. Qadri, “Hepatitis C Virus Infection: Molecular Pathways to Insulin resistance,” Virol. J., vol. 8, no. 1, p. 474, 2011.
Y. W. Eom, K. Y. Shim, and S. K. Baik, “Mesenchymal stem cell therapy for liver fibrosis,” Korean J. Intern. Med., vol. 30, no. 5, p. 580, 2015.
S. L. Friedman, “Mechanisms of Hepatic Fibrogenesis,” Gastroenterology, vol. 134, no. 6, pp. 1655–1669, 2008.
A. Pellicoro, P. Ramachandran, J. P. Iredale, and J. A. Fallowfield, “R p Liver fibrosis and repair : immune regulation of wound healing in a solid organ,” Nat. Publ. Gr., vol. 14, no. 3, pp. 181–194, 2014.
S. Hemmann, J. Graf, M. Roderfeld, and E. Roeb, “Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies,” J. Hepatol., vol. 46, no. 5, pp. 955–975, 2007.
T. T., S. T., N. N. M., Y. H., Y. D., O. M., M. N., K. T., K. Y., N. Y., F. H., N. N. M., I. M., T. K., W. M., H. I., T. Tahara, T. Shibata, M. Nakamura, H. Yamashita, D. Yoshioka, M. Okubo, N. Maruyama, T. Kamano, Y. Kamiya, Y. Nakagawa, H. Fujita, M. Nagasaka, M. Iwata, K. Takahama, M. Watanabe, I. Hirata, and T. Arisawa, “Effect of MDR1 gene promoter methylation in patients with ulcerative colitis,” Int. J. Mol. Med., vol. 23, no. 4, pp. 521–527, 2009.
C. Y. Zhang, W. G. Yuan, P. He, J. H. Lei, and C. X. Wang, “Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets,” World J. Gastroenterol., vol. 22, no. 48, pp. 10512–10522, 2016.
S. Josan, K. Billingsley, J. Orduna, J. Mo, R. Luong, L. Yu, R. Hurd, A. Pfefferbaum, D. Spielman, and D. Mayer, “Assessing inflammatory liver injury in an acute CCl 4 model using dynamic 3D metabolic imaging of hyperpolarized [ 1- 13 C ] pyruvate,” no. February, pp. 1671–1677, 2015.
J. E. Puche, Y. Saiman, and S. L. Friedman, “Hepatic stellate cells and liver fibrosis,” Compr. Physiol., vol. 3, no. 4, pp. 1473–1492, 2013.
D. Li, L. He, H. Guo, H. Chen, and H. Shan, “Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging,” EJNMMI Res., vol. 5, no. 1, p. 71, 2015.
S. Lepreux and A. Desmoulière, “Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts,” Front. Physiol., vol. 6, no. MAY, pp. 1–8, 2015.
C. Hellerbrand, B. Stefanovic, F. Giordano, E. R. Burchardt, and D. A. Brenner, “The role of TGFfll in initiating hepatic stellate cell activation in vivo,” pp. 77–87, 1999.
N. Muhanna, S. Doron, O. Wald, A. Horani, A. Eid, O. Pappo, S. L. Friedman, and R. Safadi, “Activation of Hepatic Stellate Cells After Phagocytosis of Lymphocytes: A Novel Pathway of Fibrogenesis,” pp. 963–977, 2008.
A. L. Olsen, S. A. Bloomer, E. P. Chan, M. D. A. Gaça, P. C. Georges, B. Sackey, M. Uemura, P. A. Janmey, R. G. Wells, O. Al, B. Sa, C. Ep, G. Mda, G. Pc, B. Sackey, M. Uemura, J. Pa, and W. Rg, “Hepatic stellate cells require a stiff environment for myofibroblastic differentiation,” pp. 110–118, 2011.
J. Sowa, R. K. Gieseler, C. Jochum, L. P. Bechmann, A. El Fouly, M. Schlattjan, F. Saner, H. A. Baba, A. Paul, V. Dries, M. Odenthal, G. Gerken, S. L. Friedman, and A. Canbay, “Acute Liver Failure Is Associated With Elevated Liver Stiffness and Hepatic Stellate Cell Activation,” pp. 1008–1016, 2010.
H. Rahavi, S. M. Hashemi, M. Soleimani, J. Mohammadi, and N. Tajik, “Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model,” vol. 2015, 2015.
S. Pouya, M. Heidari, K. Baghaei, H. Asadzadeh Aghdaei, A. Moradi, S. Namaki, M. R. Zali, and S. M. Hashemi, “Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis,” Int. Immunopharmacol., vol. 54, no. October 2017, pp. 86–94, 2018.
V. C. Alcoholism, I. Portal, N. Mouse, R. Knockout, A. L. T. Bilirubin, H. Biopsy, H. Non-invasive, G. S. Genetic, and H. C. C. Human, “Experimental liver fibrosis research : update on animal models , legal issues and translational aspects Experimental liver fibrosis research : update on animal models , legal issues and translational aspects,” 2013.
J. Liang, B. Zhang, R. Shen, J. Liu, M. Gao, Y. Li, Y. Li, and W. Zhang, “Preventive Effect of Halofuginone on Concanavalin A- Induced Liver Fibrosis,” vol. 8, no. 12, pp. 1–8, 2013.
M. Holdener, E. Hintermann, M. Bayer, A. Rhode, E. Rodrigo, G. Hintereder, E. F. Johnson, F. J. Gonzalez, J. Pfeilschifter, M. P. Manns, M. V. G. Herrath, and U. Christen, “Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection,” vol. 205, no. 6, pp. 1409–1422, 2008.
D. Laukens, F. Heindryckx, H. Van Vlierberghe, A. Geerts, F. S. Wong, L. Wen, and I. Colle, “Hepatitis mouse models : from acute-to-chronic autoimmune hepatitis,” 2014.
M. Zierden, E. Kühnen, M. Odenthal, and H. Dienes, “Effects and Regulation of Autoreactive CD8 ؉ T Cells in a Transgenic,” YGAST, vol. 139, no. 3, p. 975–986.e3, 2010.
S. Procedures, “MORPHOLOGIC AND FUNCTIONAL CHANGES IN THE LIVERS OF,” no. group II.
P. Georgiev, W. Jochum, S. Heinrich, J. H. Jang, A. Nocito, F. Dahm, and P. Clavien, “Characterization of time-related changes after experimental bile duct ligation,” pp. 646–656, 2008.
A. Bertola, S. Mathews, S. H. Ki, H. Wang, and B. Gao, “Mouse model of chronic and binge ethanol feeding ( the NIAAA model ),” Nat. Protoc., vol. 8, no. 3, pp. 627–637, 2013.
S. Mathews, M. Xu, H. Wang, A. Bertola, and B. Gao, “Animals Models of Gastrointestinal and Liver Diseases . Animal models of alcohol-induced liver disease : pathophysiology , translational relevance , and challenges,” vol. 20892, pp. 819–823, 2014.
A. Keegan, “Ethanol-related liver injury in the rati a model of steatosis, inflammation and pericentral fibrosis,” pp. 591–600, 1995.
R. Issa, X. Zhou, N. Trim, H. Millward-sadler, S. Krane, C. Benyon, and J. Iredale, “Mutation in collagen-I that confers resistance to the action of collagenase results in failure of recovery from CCl 4 -induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration,” 2002.
- Abstract Viewed: 225 times
- PDF Downloaded: 121 times