Mesenchymal stem cells as potential therapeutic approaches in celiac disease
Gastroenterology and Hepatology from Bed to Bench,
Vol. 9 No. Supplement 1 (2016),
8 December 2016
https://doi.org/10.22037/ghfbb.v0i0.1054
Abstract
As a chronic immune complication, celiac disease has a broad spectrum of clinical manifestations and gluten ingestion as an external trigger will induce the onset of this disease in genetically predisposed individuals. Because of the complex nature of celiac disease and various cascades of immunological pathways, therapies which are tend to target a single pathway or factor, often have unsatisfactory results. Thus, it should be considered that the new emerging area of cellular therapy by targeting multiple pathways may hold the key for treating celiac affected patients with complicated forms of this disease. The aim of this review is to discuss different pathways which are affected by celiac disease and to compare how various strategies, mainly cellular therapies, can regulate these pathways.
- Celiac disease
- Cell therapy
- Immunological pathways
How to Cite
References
Rostami K, Villanacci V. Microscopic enteritis: novel prospect in coeliac disease clinical and immuno-histogenesis. Evolution in diagnostic and treatment strategies. Dig Liver Dis 2009;41:245-52.
Green PH, Jabri B. Coeliac disease. The Lancet. 2003;362:383-91.
Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797-801.
Sollid LM, Lie BA. Celiac disease genetics: current concepts and practical applications. Clin Gastroenterol Hepatol 2005;3:843-51.
Rostami K, Al Dulaimi D, Rostami-Nejad M, Villanacci V, Danciu M. Microscopic enteritis and pathomechanism of malabsorption. Autoimmunity Highlights. 2010;1(1):37-8.
Jabri B, Sollid LM. Mechanisms of disease: immunopathogenesis of celiac disease. Nat Clin Pract Gastroenterol Hepatol 2006;3:516-25.
Lee A, Ng D, Diamond B, Ciaccio E, Green P. Living with coeliac disease: survey results from the USA. J Hum Nutr Diet 2012;253:233-8.
Al-Toma A, Verbeek W, Mulder C. The management of complicated celiac disease. Dig Dis 2007;25):230-36.
Rostami-Nejad M, Rostami K, Emami MH, Zali MR, Malekzadeh R. Epidemiology of celiac disease in Iran: a review. Middle East J Dig Dis 2011;3:5-12.
Mastrandrea F, Semeraro FP, Coradduzza G, Manelli M, Scarcia G, Pezzuto F, et al. CD34+ hemopoietic precursor and stem cells traffic in peripheral blood of celiac patients is significantly increased but not directly related to epithelial damage severity. Eur Ann Allergy Clin Immunol 2008;40:90–103.
Piscaglia AC, Rutella S, Laterza L, Cesario V, Campanale M, Cazzato IA, et al. Circulating hematopoietic stem cells and putative intestinal stem cells in coeliac disease. J Transl Med 2015; 13: 220.
Montgomery RK, Shivdasani RA. Prominin1 (CD133) as an intestinal stem cell marker: promise and nuance. Gastroenterology 2009;136:2051-54.
Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell‐based therapy in gastroenterology and hepatology. Minim Invasive Ther Allied Technol 2008;17:100-18.
Biagi F, Gobbi P, Marchese A, Borsotti E, Zingone F, Ciacci C, et al. Low incidence but poor prognosis of complicated coeliac disease: a retrospective multicentre study. Dig Liv Dis 2014;46:227-30.
Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA. Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J Gastroenterol 2005;40:1089-99.
Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, et al. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterol 2005;128:1984-95.
Ciccocioppo R, Di Sabatino A, Parroni R, Muzi P, D’Alò S, Ventura T, et al. Increased enterocyte apoptosis and Fas-Fas ligand system in celiac disease. Am J Clin Pathol 2001;115:494-503.
Malamut G, El Machhour R, Montcuquet N, Martin-Lannerée S, Dusanter-Fourt I, Verkarre V, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease–associated inflammation and lymphomagenesis. J Clin Invest 2010;120:2131-43.
Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998;160:5729-34.
DePaolo R, Abadie V, Tang F, Fehlner-Peach H, Hall J, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011;471:220-24.
Al-toma A, Visser OJ, van Roessel HM, von Blomberg BME, Verbeek WH, Scholten PE, et al. Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 2007;109:2243-49.
Ding D-C, Shyu W-C, Lin S-Z. Mesenchymal stem cells. Cell transplant 2011;20:5-14.
Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 2010;21:1045-56.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-17.
Barry FP, Murphy JM, English K, Mahon BP. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 2005;14:252-65.
González MA, Gonzalez–Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136:978-89.
Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 2010;14:2190-99.
Siegel G, Schäfer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation 2009;87:S45-S9.
Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 2007;84:231-37.
Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. Tolerization of dendritic cells by HLA‐G. Eur J Immunol 2005;35:1133-42.
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen‐G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells 2008;26:212-22.
Jeon MK, Klaus C, Kaemmerer E, Gassler N. Intestinal barrier: molecular pathways and modifiers. World J Gastrointest Pathophysiol 2013;4:94-99.
Ciccocioppo R, Finamore A, Ara C, Di Sabatino A, Mengheri E, Corazza GR. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol 2006;125:502-11.
Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 2011;11:445-56.
Dunne MR, Elliott L, Hussey S, Mahmud N, Kelly J, Doherty DG, et al. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 2013;8:e76008.
Ciccocioppo R, D'Alo S, Parroni R, Millimaggi D, Cifone M, Corazza G. Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 2001;49:380-86.
Ciccocioppo R, Di Sabatino A, Parroni R, D’alo S, Pistoia M, Doglioni C, et al. Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin Exp Immunol 2000;120:235-40.
Rostami-Nejad M, Romanos J, Rostami K, Ganji A, Ehsani-Ardakani MJ, Bakhshipour A-R, et al. Allele and haplotype frequencies for HLA-DQ in Iranian celiac disease patients. World J Gastroenterol 2014;20:6302-308.
Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 1989;169:345-50.
Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009;113:6576-83.
English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol lett 2008;115:50-58.
Ichii M, Oritani K, Yokota T, Nishida M, Takahashi I, Shirogane T, et al. Regulation of human B lymphopoiesis by the transforming growth factor-β superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Exp Hematol 2008;36:587-97.
Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006;107:367-72.
Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 2007;92:881-88.
Pabst O, Mowat A. Oral tolerance to food protein. Mucosal immunol 2012;5:232-39.
Bacchetta R, Gambineri E, Roncarolo M-G. Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol 2007;120:227-35.
Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2, 3 dioxygenase (IDO). PloS One 2011;6:e14698.
- Abstract Viewed: 639 times
- PDF Downloaded: 248 times