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ABSTRACT 
Cell death is a major factor separating healthy physiology from pathology and is rightly the target of considerable 
attention in the development of new therapies. Most of the effort has been directed at the activation of key effectors of 
apoptosis and the molecules that regulate this activation. This approach may be valid to address cancer, but otherwise, 
while efforts are making progress, they miss an important point that addresses cells that die too soon or inappropriately. 
In these situations, the stress on the cell often derives from an external source, and ultimately this stress must be 
relieved. If it is not, the cell is still likely to die, though perhaps not by apoptosis. Controlled autophagy, in which 
specific organelles are removed, begins to give us clues by which we may learn to understand how organelles are 
targeted.  
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INTRODUCTION  
1 Cell death is clinically an important event for 

many reasons.  Beyond early development, where 
it is a major component of organogenesis, the 
specificity of the immune and central nervous 
systems is defined by the massive overproduction 
of cells and the selective elimination of up to two 
thirds of them.  Excessive or uncontrolled deaths, 
or failure of cell death at the appropriate time, lead 
to severe pathologies, and even death.  In adult 
life, failure of cell homeostasis can occur either 
through failure of cells to divide or by 
deregulation of their normal death mechanisms.  
Thus, neurodegenerative diseases, autoimmune 
diseases, and many forms of cancer can be linked 
to problems with the control of cell death. 
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By far the greatest number of these deaths 
occur through the process of apoptosis.  Most 
prominently in the immune system, a receptor- 
ligand interaction triggers the activation of the 
initiator caspase, caspases 8, leading to a cascade 
that ultimately activates the effector caspases 3 
and 7.  The effector caspases are the most 
important destroyers of the cell.  In other 
situations, any of several metabolic changes lead 
to the deep polarization of the mitochondria in the 
activation of initiator caspase 9, which in turn can 
activate caspases 3 and 7.  However, early 
attempts to control cell death by interfering with 
caspase function did not work very well.  
Presumably, they reason that they did not work 
well was that, while the destruction of the cell 
might have been delayed, the targeted cell 
remained in very poor condition, owing to 
problems that had brought on the condition in the 
first place, and cellular function was not restored. 
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Today's efforts are targeted mostly against 
cancer and overactive or hyper-proliferative 
immunocompetent cells.  The techniques include: 
monoclonal antibodies, SI RNAs, small molecule 
inhibitors, antisense message, proteins capable of 
interacting with one or more regulators of cell 
death, targeted assassins, and gene therapy.  For 
most of these approaches, the goal is to activate 
apoptosis in potentially noxious cells.  There is 
less effort today to prevent cell death in the more 
chronic situations of neuronal death, such as in 
Parkinson's disease or Alzheimer's.  In the more 
acute situation of cell loss owing to viral infection, 
especially AIDS, the effort has been more 
supportive -- delivery of growth factors, mitogens, 
or hormones that potentially will tip the balance of 
the cell from death towards survival. For a 
sampling of current efforts, see (1-17). 

 

LOGIC OF THIS APPROACH 

There is a reason for this approach.  When a 
cell is in trouble, several things happen: first, it 
will attempt to survive, using autophagy or any 
other protective mechanism to keep going.  This 
autophagy may ultimately lead to the death of the 
cell in the same sense that is starving individual 
will finally burn skeletal and cardiac muscle.  That 
is vital for survival.  The second issue is that in 
most circumstances, the origin of the problem is 
not from within the cell, but rather derives from an 
external source. Because of an undefined 
limitation -- deriving from a circulatory problem, 
a lack of a critical growth factor, a corrupted or 
otherwise unsatisfactory substratum, failure of 
nutrient delivery or removal of waste, or other 
problem -- the cell is not thriving.  If that problem 
is not corrected, manipulation of the machinery of 
cell death will not lead to an improved existence. 

This then is the problem that faces us: we now 
know a great deal about the mechanics of 
apoptosis -- thanks to the magnificent studies of 
many researchers far more brilliant than I -- and 

we know a considerable amount about the 
mechanics of autophagy.  We sometimes know 
how the process of death starts (with the coupling 
of a ligand such as Fas-ligand or TNF) or what the 
initiating trigger might be (overloading of the 
endoplasmic reticulum, oxidation of unknown 
proteins or lipids, or damage to mitochondria).  
But what is really missing is the transduction.  A 
case in point is being very directly controlled, 
manifestly physiological, process of insect 
metamorphosis.  Although insects have caspases, 
what is seen in the metamorphic death of the 
large, post-mitotic cells of insect larvae is massive 
autophagy, which may or may not terminate in a 
final phase of apoptosis.  The cells were 
previously in excellent health, and the autophagy 
targets specific organelles in sequence -- glycogen 
particles mitochondria and ER.  Typically, and 
similar to what is seen in mammalian cells in 
culture, mitochondria are among the last 
organelles to be consumed.  As is typical of 
"autophagic cell death,” the nuclei do not collapse 
until the mitochondria are gone (18-27). 

 

AUTOPHAGY AND AUTOPHAGIC 

CELL DEATH 

These metamorphic deaths are typically 
brought about by the rise of the molting hormone 
ecdysone.  The facts that the hormone creates this 
situation and that the autophagy targets one 
organelle after another, make it hard to accept the 
idea that the autophagic process is aggressive.  In 
other words, one can imagine only with difficulty, 
a situation in which the autophagic membranes 
suddenly alter to recognize an otherwise 
functioning organelle.  It is far more likely that the 
organelle has altered to admit a signal that causes 
the autophagic vacuole to form.  For instance, 
there is evidence that be polarized mitochondria 
are subjected to autophagy.  We would consider 
the autophagosome to be more a hyena than a lion, 
more a vulture than a raptor. 
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It is much more likely, though still unproven, 
that the autophagosome is a scavenger rather than 
a predator.  If this is true, then knowledge of all of 
its genes, while helpful, does not directly address 
the problem of transduction.  We still need to 
know what initiates the formation of the isolating 
membranes and what causes them to identify and 
contact specific organelles.  In the same sense that 
an emergency room physician must identify 
symptoms and decide which are the most life-
threatening, we need to be able to identify this 
symptoms and molecular causes that define a cell 
as sick.  To do so, we must focus more on the 
molecular changes in the target organs and in the 
milieu of the cell.  This knowledge will allow us 
to understand the vulnerabilities and strengths of 
the cell.  We will then be able to target our 
therapeutics specifically toward these 
vulnerabilities and strengths.  The drugs that we 
will design will thus become far more delicate and 
effective. 
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