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ABSTRACT 

Aim: Determining critical dysregulated proteins in liver cancer was the main aim of this study. 

Background: Liver cancer is a common health problem characterized by difficulties in early diagnosis and rapid progression. Due to 

the lack of targeted drugs and the other features of the disease, the survival rate for patients is extremely low. 

Methods: The related dysregulated proteins for liver cancer were retrieved from the STRING database. The queried proteins were 

included in a network by Cytoscape software, and the central nodes of the network were enriched via gene ontology.    

Results: Among 11 introduced central nodes (GAPDH, TP53, EGFR, MYC, INS, ALB, IL6, AKT1, VEGFA, CDH1, and HRAS), 

HRAS and AKT1 were highlighted as critical dysregulated proteins which can be considered as possible biomarkers. 

Conclusion: Analysis revealed that AKT1, HRAS and the related biochemical pathways (especially “HIF-1 signaling pathway”) are 

the possible diagnostic and therapeutic agents of liver cancer.   
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Introduction
1Liver cancer, a common human cancer, is a disease 

with poor diagnosis and rapid progress, which causes 

high mortality rates and difficult treatment (1). Many 

efforts using proteomics and genomics to explore the 

molecular mechanism of liver cancer led to introducing 

some dysregulated genes and proteins in liver cancer 
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(2-4). In high throughput methods such as proteomics 

and genomics, large numbers of dysregulated proteins 

or genes identify which express the gene expression 

pattern in the studied samples (5, 6). 

Network analysis is useful for organizing and 

analyzing many proteins, genes, or metabolites. In this 

method, the queried proteins are linked together to 

construct a network (7). Network analysis of dysregulated 

proteins in many diseases is led to the discovery of many 

critical proteins in the studied disorders (8, 9).  

Protein network analysis explores patterns of 

connection between elements of the network. In such 

analysis, the proteins interacting directly with many 

other nodes are known as hub nodes. It is proposed that 

the hub nodes play an essential role in the network and 

are participated in the possible dysregulated biological 
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processes (10). Human cancer is a common disorder that 

is studied via network analysis. Researchers introduce 

many central proteins for different types of cancers (11). 

M Zamanian Azodi et al. published a document about 

common colon and breast cancer features using protein-

protein interaction network analysis (12). 

Biochemical pathway analysis is the other analytical 

method to identify disease-dysregulated pathways. The 

explored dysregulated pathways provide new insight 

into the molecular mechanism of diseases and make it 

possible for the drug targets to be determined. 

Biochemical pathway analysis is used to assess 

molecular features of different types of diseases (13).  

TB Nguyen et al. published data about network 

analysis of liver cancer. Based on this document, 

several hub genes, such as TOP2A, RRM2, NEK2, 

CDK1, and CCNB1, are introduced for a network of 

liver cancer. This investigation used data from the 

Gene Expression Omnibus database (14). M 

Zamanian Azodi et al. reported information about the 

prevention effects of physical exercises on liver 

cancer via network analysis (15). 

In the present study, the well-established data from 

the STRING database related to liver cancer analyzes 

via network analysis to find the potent central protein 

considering 4 centrality parameters: degree, 

betweenness centrality, closeness centrality, and stress. 

The central proteins were enriched via gene ontology to 

identify the main dysregulated biochemical pathways. 

Methods 

STRING database includes “protein query”, 

“PubMed query”, and “disease query”. The number of 

100 proteins that are related to liver cancer were 

extracted from the “disease query” of the STRING 

database (16) and were interacted via undirected 

edges by Cytoscape software version 3.7.2 (17). The 

network was analyzed by the “NetworkAnalyzer” 

application of Cytoscape and visualized based on 

degree value. The distribution of degree value, 

 
Figure 1. Main connected component subnetwork of liver cancer. The nodes are layout based on degree value. Red to blue refers 

to node degree increment. 
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betweenness centrality, and closeness centrality for 

the network nodes was plotted. Since centrality 

parameters can differentiate the nodes of the 

constructed network, the network was invested based 

on degree values, betweenness and closeness 

centralities, and stress. To find the central nodes of 

the network, 20% of nodes based on degree value, 

betweenness centrality, closeness centrality, and stress 

were identified in the four groups of nodes. Common 

proteins between the four groups were determined as 

central proteins. Gene ontology analysis was applied 

for the central proteins via Cytoscape software's 

ClueGO application (version 2.5.7) (18). The 

biochemical pathways were extracted from KEEG 

(Kyoto Encyclopedia of Genes and Genomes) and 

were classified based on kappa score. 

Results 

A network including a main connected component 

and 6 isolated proteins was constructed. 2359 edges 

connected a number of 94 nodes. The network was 

visualized by degree value (Figure 1). To understand 

the property of the created network, plots of degree 

value, betweenness centrality, and closeness centrality 

distribution are provided and shown in Figures 2-4. The 

finding indicates that there are a few numbers of nodes 

that can be considered central nodes. 

The top 20 nodes based on degree value were 

identified as hub proteins. Like hub proteins, 20 nodes 

considering betweenness centrality were determined as 

bottlenecks. The number of 15 common hubs and 

bottlenecks were selected as hub-bottlenecks. The 11 hub-

bottlenecks were common, with the nodes considered as 

top nodes based on closeness centrality and stress. These 

 
Figure 2. Degree distribution of nodes of liver cancer network. The fitted line is presented in red. 

Table 1. Central nodes and the related centrality parameters of liver cancer network 

display name Degree Betweenness Centrality Closeness Centrality Stress 

GAPDH 82 0.024 0.894 2858 

TP53 82 0.021 0.894 2710 

EGFR 80 0.018 0.877 2484 

MYC 80 0.015 0.877 2370 

INS 79 0.030 0.869 2984 

ALB 79 0.018 0.869 2460 

IL6 78 0.016 0.861 2336 

AKT1 78 0.011 0.861 2212 

VEGFA 78 0.011 0.861 2044 

CDH1 76 0.010 0.845 1854 

HRAS 76 0.008 0.838 1722 
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11 proteins are well-thought-out as central proteins.   

The 11 central proteins and their centrality 

properties are shown in Table 1. The number of 21 

biochemical pathways related to the central nodes are 

identified via gene ontology. The determined pathways 

are shown in Figures 5 and 6. The introduced pathways 

are grouped into 3 clusters: bladder cancer, prostate 

cancer, and HIF-1 signaling pathway. 

 
Figure 3. Betweenness centrality distribution of nodes of liver cancer network. The fitted line is presented in red. Centrality 

amounts are reported as unnormalized data. 

 
Figure 4. Closeness centrality distribution of nodes of liver cancer network. The fitted line is presented in red. Centrality amounts 

are reported as unnormalized data. 
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Discussion 

There are many documents about the molecular 

mechanism of liver cancer and the dysregulated genes 

related to this type of cancer (19, 20). As a suitable 

method, bioinformatic analysis can be used to explore 

molecular aspects of different diseases. As reported, 

TOP2A, RRM2, NEK2, CDK1, and CCNB1 are 

introduced as prognostic biomarkers of liver cancer via 

bioinformatic analysis (14). In the present study, 

 
Figure 5. Biochemical pathways are related to the central nodes of liver cancer network. The names of groups are bolded. HIF-1 

signaling pathway, Bladder cancer, and Prostate cancer are the three pathways classes. 

 
Figure 6. Biochemical pathways are related to the central nodes of liver cancer network in connection with the related proteins. 

The names of groups are bolded. 
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network analysis is applied to discover possible 

biomarker candidates related to liver cancer. As 

depicted in Figure 1, the dysregulated proteins related 

to liver cancer participate in a network via different 

strengths (different numbers of connections). The nodes 

of the illustrated network have appeared as elements 

with different centrality properties. The distribution of 

central parameters of the analyzed nodes of the network 

that are presented in Figures 2-4 indicates that a few 

central nodes are highlighted from the other nodes by 

higher values of centrality amounts. These highlighted 

nodes are introduced as the central nodes in Table 1. As 

it is shown in Table 1, GAPDH, TP53, EGFR, MYC, 

INS, ALB, IL6, AKT1, VEGFA, CDH1, and HRAS are 

the 11 central nodes of the liver cancer network.  

Gene ontology revealed that three classes of 

biological terms, including 21 biochemical pathways, 

are related to the central nodes. As it is presented in 

Figure 6, no biological terms are related to albumin. 

Two potent central nodes are seen in Figure 6, which 

are characterized by large connections with the 

introduced biological terms. These central nodes are 

AKT1 and HRAS. AKT1 and HRAS are connected to 

most of the identified biochemical pathways. 

Some documents refer to the significant role of 

Akt1 in regulating the development of inflammation 

and fibrosis accompanied by alcoholic liver disease 

(21). Xu Z et al. concluded that AKT1 upregulation is 

accompanied by poor survival in patients with 

hepatocellular carcinoma (22). JX Zhao et al. reported 

that the progress of hepatocellular carcinoma is 

associated with the up-regulation of aldose reductase. 

They showed that a higher value of aldolase reductase 

leads to dysregulation of AKT1, which increases 

AKT/mTOR signaling (23).  

Researchers report the crucial role of HRAS in 

energy homeostasis. It is shown that the gonadal fat pad 

weight of the adipose-specific HRAS transgenic mice is 

reduced, and the adipocyte size is condensed (24). V 

Pecenka et al. published data about the activation of 

HRAS in liver tumors (25).  

B Xin et al. published a document about the role of 

AKT and HRAS in inducing hepatocarcinogenesis via 

the activation of endogenous Myc. In this report, it is 

discussed that MYC, as an enhancing factor, facilitates 

the hepatocarcinogenesis process via alterations in the 

metabolism of the cells (26). 

The HIF-1 signaling pathway appears in Figures 5 

and 6 as a class of related biochemical pathways. J Han 

et al. assessed the role of the hypoxia-inducible factor 1 

(HIF-1) signaling pathway in promoting liver fibrosis 

(27). DKC Chiu et al. showed that HIF/HEY1/PINK1 

pathway regulates mitochondrial activity in 

hepatocellular carcinoma cells (28). The key elements 

in liver cancer progression are the two highlighted 

proteins AKT1 and HRAS and the related biochemical 

pathways.  

The other two biochemical pathways related to the 

central nodes of the liver cancer network are prostate 

and bladder cancers (see Figures 5 and 6). The 

investigation by Bubendorf et al. indicates that the liver 

and two other organs (lung and bone)  are the most 

frequent locations of distant prostate cancer metastases 

(29). This finding corresponds to the results of gene 

ontology in the present assessment. 

Conclusion 

Our assessment revealed that AKT1 and HRAS are 

suitable pair of biomarker candidates for liver cancer. 

The three biochemical pathways (“HIF-1 signaling 

pathway”, “prostate cancer”, and “bladder cancer”) are 

the three common pathways in liver cancer, and 

therefore “HIF-1 signaling pathway” can be a possible 

drug target in the treatment of liver cancer.   
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