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ABSTRACT 

Aim: This study aimed to detect gene signatures in RNA-sequencing (RNA-seq) data using Pareto-optimal cluster size identification. 

Background: RNA-seq has emerged as an important technology for transcriptome profiling in recent years. Gene expression 

signatures involving tens of genes have been proven to be predictive of disease type and patient response to treatment. 

Methods: Data related to the liver cancer RNA-seq dataset, which included 35 paired hepatocellular carcinoma (HCC) and non-tumor 

tissue samples, was used in this study. The differentially expressed genes (DEGs) were identified after performing pre-filtering and 

normalization. After that, a multi-objective optimization technique, namely multi-objective optimization for collecting cluster 

alternatives (MOCCA), was used to discover the Pareto-optimal cluster size for these DEGs. Then, the k-means clustering method 

was performed on the RNA-seq data. The best cluster, as a signature for the disease, was found by calculating the average Spearman's 

correlation score of all genes in the module in a pair-wise manner. All analyses were performed in the R 4.1.1 package in virtual space 

with 100 Gb of RAM memory. 

Results: Using MOCCA, eight Pareto-optimal clusters were obtained. Ultimately, two clusters with the greatest average Spearman's 

correlation coefficient scores were chosen as gene signatures. Eleven prognostic genes involved in HCC's abnormal metabolism were 

identified. In addition, three differentially expressed pathways were identified between tumor and non-tumor tissues. 

Conclusion: These identified metabolic prognostic genes help us to provide more powerful prognostic information and enhance 

survival prediction for HCC patients. In addition, Pareto-optimal cluster size identification is suggested for gene signature in other 

RNA-Seq data. 
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Introduction
1In 2012, hepatocellular carcinoma (HCC), also 

known as hepatoma, was the world's seventh most 

common cancer (1), and in 2018, it was the second 

leading cause of cancer death (2). However, in 2020, 

HCC was reported as the third leading cause of cancer 

death, with an estimated 830,180 people having died 
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from this disease. GLOBOCAN estimated in 2018 that 

approximately 72% of all liver cancer cases arise in 

Asian countries (3). 

HCC accounts for 90% of all primary liver 

malignancies. Hepatitis B virus (HBV), hepatitis C 

virus (HCV), and cirrhosis are all risk factors for this 

disease (1). 

HCC is treated with resection of the tumor region 

(resection) and liver transplantation, in addition to 

chemotherapy, which has not been very successful. 

Where there are no extrahepatic metastases, tumor 

resection is effective. For HCC patients who do not 
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have metastatic disease, liver transplantation is the 

most appropriate treatment option (4). In addition to 

prevention, early diagnosis of the tumor, when the 

patient is asymptomatic and liver function is still intact, 

is one of the principal ways to improve the prognosis of 

HCC, because in this clinical setting, effective 

medicines with survival benefits can be implemented 

(5).The range of the median overall survival (OS) for 

HCC with a late diagnosis is 6 to 20 months (6).  

Due to disease development, old age, and other 

factors, the majority of patients are not appropriate 

candidates for treatment. As there are few liver donors, 

most people awaiting a liver transplant die because of 

the tumor and disease progression (7). 

Today, gene expression signatures containing tens 

of genes have been shown to be predictive of disease 

type and patient response to treatment. They have also 

been shown to be useful in numerous studies 

investigating biological mechanisms. A gene signature 

or gene expression signature is a single or combined 

group of genes in a cell with a uniquely characteristic 

pattern of gene expression that occurs as a result of an 

altered or unaltered biological process or pathogenic 

medical condition (8).  

RNA-sequencing (RNA-seq) has emerged as an 

important technology for transcriptome profiling in 

recent years. The number of mapped reads for a given 

gene is determined not only by its expression level and 

gene length, but also by the sequencing depth. To 

normalize these dependencies, gene or transcript 

expression levels are measured using FPKM (fragments 

per kilobase of transcript per million fragments 

mapped) (9). There are many methods used to analyze 

such data, but one of the most important and widely 

used methods of data analysis, which is also one of the 

exploratory methods, is the use of cluster analysis (10). 

In partitioning clustering, such as k-means 

clustering which allows the user to specify the number 

of clusters k to be created, determining the optimal 

number of clusters in a data set is a fundamental 

problem. This question, unfortunately, has no definitive 

response, and the error rate could rise as a result. Multi-

objective optimization can be combined with variability 

analysis for cluster number estimation. Cluster number 

estimation is commonly thought of as a single-objective 

optimization problem with determining the best cluster 

number k as its goal. This method is highly dependent 

on the cluster algorithm and cluster validation measure 

used, as different algorithms and validity measures 

predict different optimal k values (11). Cluster analysis, 

on the other hand, is an exploratory data mining 

technique that has the ability to illustrate many aspects 

of data when used with various parameter 

configurations, resulting in several potentially valid 

solutions. Accordingly, for the set of cluster 

alternatives, a multi-objective optimization technique 

(MOCCA) was used in the current study. Cluster 

variability analysis was used in the first step to produce 

a set of k cluster results for various cluster algorithms. 

The collection of cluster results was then evaluated in 

the second stage using various cluster validation steps. 

The Pareto set of alternative cluster results was 

computed in the final step. The elements of the Pareto 

set were also classified according to the number of 

dominated objectives (12). Because of the importance 

and application of clustering in genetics, the Pareto 

optimization algorithm was used herein to find gene-

signature clusters in liver cancer data. In other words, 

this study used a multi-objective optimization strategy 

for the set of cluster alternatives (MOCCA). 

Methods 

Data collection and gene expression 

analysis 
In this study, mRNA expression datasets of HCC 

were searched using the keywords “FPKM,” “mRNA,” 

“Hepatocellular carcinoma,” and “Homo sapiens” 

[porgn: txid9606] in the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo). 

Datasets with tumor and non-tumor tissue samples were 

considered. The Research Ethics Committee of the 

University of Social Welfare and Rehabilitation 

Sciences approved the current study (Code: 

IR.USWR.REC.1398.158). 

After a systematic review, a GSE profile 

(GSE124535 based on GPL20795, HiSeq X Ten 

[Homo sapiens]) was selected and analyzed. Gene 

expression analysis was performed by the limma 

package in Bioconductor that was utilized to mine 

statistically significant differentially expressed genes 

(DEGs) based on the difference in their expression 

values between non-tumor and tumor samples with 

log2 fold change ≥ 1, and an adjusted p-value threshold 

of 0.05 were considered as significantly differentially 

http://www.ncbi.nlm.nih.gov/geo
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expressed genes (13). After that, an expression matrix 

from up- and down-regulated genes (mural DEGs) was 

created for analysis. The volcano plot was also applied 

using bi-filtering approaches (p-value filtering and fold 

change filtering) consecutively. 

Identification of gene signatures 
The R package MOCCA was used on the data of the 

mural DEGs to determine the optimal (robust) number 

of clusters after identifying the collection of 

differentially expressed genes (up-regulated and down-

regulated genes). 

The stable cluster numbers are determined using a 

bootstrapping method based on multiple cluster validity 

indices. It is worth noting that these estimates can vary 

depending on the clustering technique used and the 

cluster validation index. 

It is worth noting that these estimates can vary 

depending on the clustering strategy and cluster 

validation index used. The MOCCA method is based 

on aggregating the best cluster numbers from various 

clustering algorithms and various cluster validation 

indices in a multi-objective setting to determine the 

robust (Pareto-optimal) cluster numbers. To begin, 

MOCAA performs a multi-objective optimization to 

collect cluster alternatives. The data-matrix is then used 

to extract R number of bootstrap samples. It uses three 

clustering techniques to compute clustering for all 

unique cluster numbers K (kmeans, single-linkage, and 

neuralgas clustering). 

Following that, it clusters using a variety of cluster 

validation indices (MCA, Jaccard, FM, and CQS). To 

achieve the Pareto ideal (robust) number of clusters, a 

total of twelve objective functions (kmeans.MCA, 

kmeans.Jaccard, kmeans.FM, kmeans.CQS, 

neuralgas.MCA, neuralgas.Jaccard, neuralgas.FM, 

neuralgas.CQS, single.MCA, single.Jaccard, single.FM, 

single.CQS). These results (cluster validity indices) 

were then compared by determining the Pareto-optimal 

cluster sizes and ranking them by dominance. 

The Pareto-optimal cluster sizes were classified 

based on the lowest number of goals for which they 

outperformed the remaining cluster sizes. Then, k-

means clustering with the optimal cluster size was used 

to identify the cluster information of each participating 

gene after determining the optimal number of clusters. 

Next, the average Spearman's correlation coefficient 

score of each resultant cluster was calculated using the 

Spearman's correlation coefficient score computed 

among the participating pairwise genes. The best 

cluster was chosen as the one with the highest average 

Spearman's correlation coefficient score. The best 

cluster's combined gene set was used as a gene 

signature in this study. Our strategy is presented in 

Figure 1. 

 Figure 1. Flowchart of the suggested framework to identify gene signature 



390 Identification of gene signature in RNA-Seq hepatocellular carcinoma data 

Gastroenterol Hepatol Bed Bench 2022;15(4):387-394 

Gene Set Enrichment Analysis  
The DAVID database was used to conduct KEGG 

pathway analyses for the signature's participating 

genes. Only KEGG pathways or Gene-Ontology words 

with an enriched p-value of less than 0.05 were 

included in this study. 

Results 

Identification of DEGs 
In this study, GSE124535 (GPL20795) was used 

and the RNA-seq dataset contained 70 samples (35 

non-tumors and 35 tumors). Using the limma package 

in R language programming, differential expression 

analysis was carried out between non-tumor and tumor 

tissues. A total of 1157 DEGs (410 up-regulated and 

747 down-regulated genes) were identified 

(supplementary file 1). Moreover, the volcano plot 

(Figure 2) was utilized using bi-filtering approaches (p-

value filtering and fold change filtering) consecutively. 

Determination of gene signatures 
The R package MOCCA was used on the data of 

these genes to evaluate the Pareto-optimal (robust) 

number of clusters after the collection of up-regulated 

and down-regulated genes was identified. As a result, 

the Pareto-optimal cluster size was found to be 8. Table 

1 shows the objective values for each of the twelve 

objective functions.  

Table 1. Twelve objectives in MOCCA and their values from 

the hepatocellular carcinoma (HCC) cancer RNA-seq dataset. 

Objective Objective value 

kmeans.MCA 0.551903 

kmeans.Jaccard 0.389215 

kmeans.FM 0.511502 

kmeans.CQS 0.993375 

neuralgas.MCA 0.589965 

neuralgas.Jaccard 0.376686 

neuralgas.FM 0.505094 

neuralgas.CQS 0.993018 

single.MCA 0.480104 

single.Jaccard 0.299592 

single.FM 0.464825 

single.CQS 0.993618 

Ultimately, k-means clustering with the optimal 

cluster size was used to collect cluster information for 

each participating gene after determining the optimal 

number of clusters (n=8). 

The average Spearman's correlation coefficient 

scores of the eight clusters were 0.0706, 0.7070, 

0.4973, 0.5110, 0.5530, 0.4195, 0.5923, and 0.1975, 

respectively. “Gene-signature” was chosen as the 

second and seventh cluster with the highest average 

 
Figure 2. Volcano plot for identifying up-regulated and down-regulated genes for liver cancer dataset 
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Spearman's correlation coefficient scores (0.7070, 

0.5923, respectively). It is worth noting that the gene 

signature included 11 differentially expressed genes 

(Table 2). 

Table 2. Names of genes and gene identities related to the 

HCC gene signature. 

Gene Symbol Full Name 

TF Transferrin 

APOC3 Apolipoprotein C3 

APOA1 Apolipoprotein A1 

RBP4 Retinol Binding Protein 4 

APOH Apolipoprotein H 

AMBP Alpha-1-Microglobulin/Bikunin Precurso 

TTR Transthyretin 

FGG Fibrinogen Gamma Chain 

FGA Fibrinogen Alpha Chain 

FGB Fibrinogen beta chain 

ORMI Orosomucoid 1 

Pathway enrichment analysis 
The DAVID online tool was utilized to find the 

enriched pathways with a p-value of ≤0.05. In GSEA 

analysis, three biological pathways were significantly 

enriched. KEGG pathway analysis indicated that 

complement and coagulation cascades, platelet 

activation, and PPAR signaling pathways were most 

prevalent in the final list (Table 3). 

Discussion 

In this study, a Pareto optimum based clustering 

framework method was utilized to identify gene 

signature in RNA-Seq liver cancer data. This method 

uses a single genomic or epigenetic data set. There are 

many other gene signature identification methodologies 

based on co-expression in the literature; however, the 

vast majority of existing approaches use either the 

WGCNA module detection method or something 

similar, in which the generalized modules are not 

optimized. The number of modules is likely to change 

if the input criterion for the minimum number of 

modules is altered. A typical clustering methodology 

was used to locate gene modules after optimizing the 

number of clusters in our method. Finally, the average 

Spearman's correlation coefficient for each module was 

computed, and the top-ranked module was employed as 

a gene signature. It should be noted that, although there 

are several bioinformatic methods for detecting gene 

signatures, no one has ever tried gene signature 

detection using Parto's ideal method for liver cancer. 

Using the mRNA expression dataset, the current 

study created an 11-gene signature for HCC prognosis 

assessment. Previous bioinformatic studies have 

investigated the AMBP gene in liver cancer. AMBP is 

differently expressed in seven liver cancer cell lines 

and 17 HCC tissues, according to research. Since 

hepatitis B is linked to HCC, AMBP might be 

considered new hepatitis B virus-related HCC hallmark 

gene (14). The role of ApoA1 in many cancers has been 

established (15). Because HCC patients who receive 

curative therapy are in the very early or early stage of 

the tumor, ApoA1 might be a potential biomarker for 

HCC early detection, prognosis, and surveillance (16). 

The mechanism of ApoA1 is still unexplored in HCC, 

but based on microarray data analysis, decreased 

ApoA1 levels have been observed in both the cancerous 

liver tissue and the serum of HCC patients (15, 16). 

The role of ApoA-I in the synthesis of high-density 

lipoproteins (HDL), the decrease in ApoA1 

transcription, intracellular and secreted ApoA-I, and 

systemic HDL levels in HCC suggest that this pathway 

may play a tumor-suppressive function (15). The role 

of APOC3 in HCC has been confirmed by 

bioinformatic studies. APOC3 is part of the APOC 

family which consists of components of chylomicrons 

(CM), very low density lipoprotein (VLDL), and HDL. 

In individuals with chronic hepatitis B, the APOC3 

polymorphism is thought to represent an independent 

risk factor for hepatocarcinogenesis and HCC 

development (17, 18). One of the roles of APOH, a 

complex efficiency and financial produced by the 

human APOH gene, is to bind cardiolipin. In hepatitis 

B-related HCC tissue, APOH was significantly 

overexpressed. Cardiolipin is a phospholipid found in 

the inner membrane of mitochondria. Cardiolipin 

oxidation causes apoptosis, which has implications for 

the hepatocellular cancer etiology (HCC) (17, 19). 

Fibrinogen alpha (FGA), beta (FGB), and gamma 

Table 3. Differentially expressed pathways between tumor and non-tumor tissues based on KEGG results. 

Pathway name p-value Genes 

Complement and coagulation cascades 0.000038 FGA, FGB, FGG 

Platelet activation 0.000144 FGA, FGB, FGG 

PPAR signaling pathway 0.001737 APOC3, APOA1 
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(FGG) are three polypeptide chains that make up the 

extracellular matrix protein fibrinogen (20). Several 

studies have found that hyperfibrinogenemia is a 

common prognostic marker in individuals with 

malignancies, and that is strongly linked to tumor 

invasion, metastasis, angiogenesis, and tumor 

development. However, the mechanism through which 

fibrinogen promotes cancer development is unknown 

(21). FGG is one of three peptide chains found in 

fibrinogen, and it is often seen in various malignant 

cancers, including HCC. Furthermore, it has been 

established that FGG is involved in the regulation of 

fibrinogen synthesis and function. For example, it 

reduces platelet adherence to fibrinogen by binding 

with hepatitis B spliced protein (22). Orm1 is a member 

of the lipocalin protein family which functions as a 

transporter of basic and neutrally charged lipophilic 

substances. Hepatocytes (HPCs) are the primary cells 

that express Orm1 when they are stressed. Its precise 

function, on the other hand, remains unknown. Qin, 

Xian-Yang et al. evidenced that Orm1 plays a role in 

HPC growth. Serum levels of Orm1 were shown to be 

higher in individuals who had their liver cancer 

surgically removed and in mice who had a partial 

hepatectomy (PH) (23). The liver and adipose tissues 

produce retinol binding protein 4 (RBP4) (24), an 

adipokine that causes obese individuals to develop 

hyperinsulinemia and type 2 diabetes (25). 

Furthermore, obesity is a well-known cancer risk 

factor, and it is closely linked to the development of 

numerous cancers, including those of the liver (26). 

TTR has been shown to be a useful biomarker for a 

variety of cancers, including lung, ovarian, advanced 

cervical, and endometrial carcinomas (27, 28). It is also 

involved in the metabolism of retinol. TTR is generated 

in part by the liver, and its levels may be reduced in 

severe liver illness, starvation, and inflammation (29, 

30). We did not find an effective role for gene TC in 

HCC or other liver diseases. 

The predicted genes were predominantly implicated 

in several pathways, according to KEGG pathway 

analysis, including complement and coagulation 

cascades, platelet activation and PPAR signaling 

pathway. Zhang et al. (2021) proved that associations 

exist between enriched differentially expressed genes 

(DEGs) in complement and coagulation cascades and 

hepatitis B virus (HBV)-related HCC patients (31). 

Complement and coagulation pathway dysregulation is 

generally caused by innate immune system 

malfunctions (32). Complement, contact/coagulation, 

and fibrinolytic mechanisms make up the majority of 

this system. Activation of these systems causes 

endothelial cells, leukocytes, and platelets to become 

activated, resulting in thrombosis and inflammatory 

responses (33). New data suggests that thrombo-

inflammation has a role in cancer development (34). 

Increased platelet activation can induce venous 

thromboembolism, which is a risk factor for malignant 

prognoses (35). Abnormal blood emboli, especially in 

advanced stages of cancer, have a significant impact on 

tumor recurrence and metastasis as well as the disease's 

prognosis (36). Furthermore, liver tumor tissue 

produces more prothrombin than normal liver tissue, 

resulting in platelet activation. As a result, platelet 

function is likely to represent the health of HCC 

patients (35, 37). PPAR signaling has manifested its 

role in the field of carcinogenesis, type 2 diabetes, and 

other metabolic disorders such as obesity; it could be an 

interesting field of research for the development of new 

strategies useful in preventing and treating cancer that 

understand the potential molecular mechanisms which 

underlie the interplay between metabolism, PPAR 

signaling, and cancer (38). Mello et al. (2016) 

discussed the roles of PPAR in modulating liver 

mitochondrial metabolism from HCC to nonalcoholic 

fatty liver disease, hypothesizing new treatment 

methods to preferentially cope with HCC fuel 

requirements in the future (39). 

Conclusion 
The current study identified eleven prognostic genes 

that participate in aberrant metabolism in HCC and 

developed a metabolic eleven-gene signature that 

provides more powerful prognostic information and 

improves the survival prediction for HCC. Moreover, 

several significant pathways have been identified to 

provide new insights into the development of HCC. 
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