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ABSTRACT 

Aim: This study aimed to identify key genes, non-coding RNAs, and their possible regulatory interactions during gallbladder cancer 

(GBC). 

Background: The early detection of GBC, i.e. before metastasis, is restricted by our limited knowledge of molecular markers and 

mechanism(s) involved during carcinogenesis. Therefore, identifying important disease-associated transcriptome-level alterations can 

be of clinical importance. 

Methods: In this study, six NCBI-GEO microarray dataseries of GBC and control tissue samples were analyzed to identify 

differentially expressed genes (DEGs) and non-coding RNAs {microRNAs (DEmiRNAs) and long non-coding RNAs (DElncRNAs)} 

with a computational meta-analysis approach. A series of bioinformatic methods were applied to enrich functional pathways, create 

protein-protein interaction networks, identify hub genes, and screen potential targets of DEmiRNAs and DElncRNAs. Expression and 

interaction data were consolidated to reveal putative DElncRNAs:DEmiRNAs:DEGs interactions. 

Results: In total, 351 DEGs (185 downregulated, 166 upregulated), 787 DEmiRNAs (299 downregulated, 488 upregulated), and 

7436 DElncRNAs (3127 downregulated, 4309 upregulated) were identified. Eight genes (FGF, CDK1, RPN2, SEC61A1, SOX2, 

CALR, NGFR, and NCAM) were identified as hub genes. Genes associated with ubiquitin ligase activity, N-linked glycosylation, and 

blood coagulation were upregulated, while those for cell-cell adhesion, cell differentiation, and surface receptor-linked signaling were 

downregulated. DEGs-DEmiRNAs-DElncRNAs interaction network identified 46 DElncRNAs to be associated with 28 DEmiRNAs, 

consecutively regulating 27 DEGs. DEmiRNAs-hsa-miR-26b-5p and hsa-miR-335-5p; and DElnRNAs-LINC00657 and CTB-

89H12.4 regulated the highest number of DEGs and DEmiRNAs, respectively.  

Conclusion: The current study has identified meaningful transcriptome-level changes and gene-miRNA-lncRNA interactions during 

GBC and laid a platform for future studies on novel prognostic and diagnostic markers in GBC. 

Keywords: Gallbladder cancer, Microarray, Transcriptome, Differentially expressed genes, Differentially expressed microRNAs, 

Differentially expressed long non-coding RNAs. 
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Introduction
1Gallbladder cancer (GBC) is one of the most 

common biliary tract cancers and the fifth most 

common gastrointestinal cancer with a mean survival 

rate of less than 5% (1). Its distribution has ethnic and 

geographical variations, with inordinately high 

occurrence rates recorded in parts of South America, 
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Southeast Asia, and Eastern Europe (2, 3). Due to the 

absence of early discernible symptoms, it is often 

detected during advanced stages, when surgical 

resection is the only curative option left, although only 

10% of resection procedures are successful due to the 

aggressive and rapid progression of the cancer (4). A 

lack of GBC-specific markers and the absence of 

targeted therapy contribute to its late diagnosis and 

poor prognosis, often resulting in poor clinical 

outcomes. Therefore, an understanding of the 

molecular-level alterations during GBC conditions will 

be helpful in developing specific markers of diagnostic 

and prognostic value (5). 

META-ANALYSIS 
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Although non-coding RNAs cannot code protein, 

they regulate gene expression at the transcriptional and 

post-transcriptional levels. microRNAs (miRNAs) are 

short non-coding RNAs which bind to the UTR regions 

of target mRNAs, thereby causing post-transcriptional 

silencing in almost 30% of the human proteins (6). On 

the other hand, long non-coding RNAs (lncRNAs) 

(<200 nucleotides) also regulate gene expression by 

acting as sponges for miRNAs, thus indirectly 

regulating mRNA expression (7). Accumulating 

evidence in recent years has indicated the tumor 

suppressive, or conversely, oncogenic potential of 

miRNAs and lncRNAs in carcinogenesis, with a few 

miRNAs and lncRNAs under investigation for 

diagnostic/prognostic/therapeutic targets for certain 

cancers (8). Molecular-level regulatory networks 

focusing on the interaction between coding genes and 

non-coding RNAs have recently gained attention in 

cancer studies, as these gene-miRNA-lncRNA 

interaction networks in cancer can clearly depict the 

loss of regulated homeostasis in biological processes 

during carcinogenesis (9). Deregulation in miRNA and 

lncRNA expression during GBC has also been 

implicated in a few studies, but the specific interactions 

have not been reported.  

A meta-analysis-based approach combines 

 
Figure 1. Diagrammatic representation of overview of methodology used in the study 
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expression profiles from multiple microarray studies 

and has been extensively utilized to identify genetic 

alterations and mechanisms associated with cancer 

(10). Multiple studies have utilized this approach to 

identify potential biomarkers, aberrant biological 

pathways, and/or gene-miRNA-lncRNA interactions in 

multiple cancers (11–14). However, similar meta-

studies have never been performed on the gene, 

lncRNA, and miRNA expression profiles in GBC. With 

the recent availability of large-scale expression data, it 

is now possible to assemble a multi-level molecular 

regulatory network for the underlying gene-miRNA-

lncRNA interactions in GBC. 

With the objective of identifying potential 

biomarkers, associated altered pathways, and gene-non-

coding RNA interactions in GBC, we analyzed NCBI-

GEO microarray expression datasets to screen 

differentially expressed genes (DEGs) and 

differentially expressed non-coding RNAs (miRNAs 

and lncRNAs) in GBC patients, compared to controls. 

The identified DEGs were subjected to GO and KEGG 

pathway analysis to identify associated significantly 

altered pathways and mechanisms in GBC. A protein-

protein-interaction network was created for the DEGs, 

and hub genes were identified from this network. 

Furthermore, we identified the differentially expressed 

miRNAs (DEmiRNAs) which could potentially 

regulate the DEGs as well as differentially expressed 

lncRNAs (DElncRNAs) associated with these 

DEmiRNAs. Finally, the expression data was 

integrated to obtain a gene-miRNA-lncRNA regulatory 

network, providing a coherent overview of the 

molecular-level regulatory mechanisms associated with 

GBC. 

Methods 

Figure 1 summarizes the workflow of the 

methodology used in the study.  

Data collection, pre-processing, and 

screening of DEGs, DEmiRNAs, and 

DElncRNAs 
The NCBI GEO database 

(http://www.ncbi.nlm.nih.gov/geo/) was searched for 

publicly available expression microarray data on GBC 

using the keywords: “gallbladder cancer,” “gallbladder 

carcinoma,” “GBC,” “CAGB,” “cancer of gallbladder,” 

“carcinoma of gallbladder.” At the time of compilation 

of the manuscript, seven GBC related dataseries were 

found in the NCBI-GEO database having expression 

profile of genes, miRNAs, and/or lncRNAs on 

gallbladder cancer and liver metastatic gallbladder 

cancer along with control tissues. From within these 

dataseries, samples that included expression profiles of 

Table 1. Details of the NCBI-GEO microarray datasets on GBC used in this study.  

GEO accession Experiment type Contributor Year  Sample size platform 

Control GBC 

GSE62335 mRNAs expression profiling  

Long noncoding RNAs 

expression profiling 

Ma MZ, et al 2014 5 5 [HuGene-2_0-st] 

Affymetrix Human Gene 

2.0 ST Array 

GSE74048 mRNAs expression profiling  

Long noncoding RNAs 

expression profiling 

Wang J and Liu 

H 

2015 3 3 Agilent-067406 Human 

CBC lncRNA + mRNA 

microarray V4.0 

GSE76633 Long noncoding RNAs 

expression profiling 

Liu Y, et al 2016 9 9 Agilent-045142 Human 

LncRNA v4 4X180K 

GSM3854440, 

GSM3854443, 

GSM3854446, 

GSM3854441, 

GSM3854444, 

GSM3854447 of 

GSE132223  

mRNAs expression profiling Liu Y and Li H 2019 3 3 Illumina HiSeq 2000 

(Homo sapiens) 

GSE104165 miRNA expression profiling Roessler S, et al 2017 8 40 Agilent-046064 

Unrestricted_Human_mi

RNA_V19.0_Microarray 

GSE90001 miRNA expression profiling Liu Y, et al 2016 4 4 Agilent-046064 

Unrestricted_Human_mi

RNA_V19.0_Microarray 

 
 

http://www.ncbi.nlm.nih.gov/geo/


314  Transcriptome meta-analysis of gallbladder cancer 

Gastroenterol Hepatol Bed Bench 2022;15(4):311-325 

human GBC tissue samples and control tissues were 

included in the study (Table 1); dataseries performed 

on GBC cell lines or other organisms and/or whose raw 

cell intensity (CEL) files were not available were 

excluded. Six microarray expression dataseries of GBC 

that met the inclusion criteria were identified in the 

database.  

The raw files (.CEL format) were downloaded from 

the database. The dataseries were normalized 

individually according to the platform used. For 

example, Affymetrix-based dataseries were normalized 

using GCRMA R package, whereas Illumina Hiseq-

based dataseries were normalized using the limma 

package. After normalization and quality control, 

differentially expressed genes and non-coding RNAs of 

each dataseries were identified using limma. Probes 

with fold change >|1| (p<0.05) were considered 

differentially expressed. Probes not assigned to any 

genes or matching multiple annotations were not 

considered. If multiple probes were assigned to the 

same annotations, those with the lowest significant p-

value were considered. Meta-analysis of all DEGs 

obtained from the dataseries was performed by merging 

the DEGs by the p-value combination technique using 

the fishercomb() and invnormcomb() functions of the 

metaRNASeq R package. Meta-analysis of DEmiRNAs 

obtained from the individual dataseries was performed 

using limma. Meta-analysis of identified DElncRNAs 

was not possible due to the lack of a common 

parameter, and therefore all DElncRNAs of the 

individual dataseries were combined.  

Functional enrichment of identified 

DEGs 
Gene ontology (GO) is a method for annotating 

genes by their functions at the molecular level, 

Table 2. Top ten DEGS, DEmiRNAs, and DElnRNAs (as fold change, upregulated, and downregulated) in gallbladder cancer, 

ranked by p-values. The table shows top 10 most significantly upregulated and top 10 most significantly downregulated DEGs, 

DEmiRNAs, and DElncRNAs in GBC.  

Upregulated Fold change p-value Downregulated Fold change p-value 

mRNAs 

CEMIP 25.51033 2.25E-15 CHRDL1 -14.8119 2.62622E-21 

MANF 3.530227 2.16E-11 IPCEF1 -131.784 2.20047E-19 

UAP1 57.96024 4.86E-11 TMEM132C -64.4814 3.64091E-14 

TMEM258 2.55462 8.3E-11 MT1A -17.0527 8.93752E-14 

HSD17B6 6.279835 9.62E-10 MGAM -4.66978 2.37047E-12 

MMP11 17.88872 1.38E-09 SHC3 -8.84884 7.59813E-12 

PSAT1 6.256313 2.26E-09 ANGPTL7 -24.1559 8.98201E-10 

OSTC 2.424898 4.21E-09 S100B -10.8407 1.10399E-09 

KIF26B 8.572264 4.5E-09 CADM2 -43.3201 1.72312E-09 

SDF2L1 4.838387 9.64E-09 APC2 -38.7752 1.92319E-09 

miRNAs 

hsa-miR-143-3p 3.931848753 4.34E-15 hsa-miR-4745-5p -11.09759903 2.29E-11 

hsa-miR-4734 3.911659969 4.50E-15 hsa-miR-144-5p -3.047165571 2.54E-11 

hsa-miR-9-5p 5.343422098 1.76E-14 hsa-miR-378h -1.884246264 2.56E-11 

hsa-miR-410 7.251264243 3.86E-14 hsa-miR-4271 -11.79238086 3.02E-11 

hsa-miR-4725-5p 7.154180556 4.23E-14 hsa-miR-3131 -5.491897637 1.08E-10 

hsa-miR-3202 4.095922645 1.26E-13 hsa-miR-195-5p -4.719383486 1.48E-10 

hsa-let-7f-1-3p 4.184298648 4.49E-13 hsa-miR-92a-3p -2.577166124 1.91E-10 

hsa-miR-4449 3.596988489 1.55E-11 hsa-miR-5708 -5.138975331 3.20E-10 

hsa-miR-135a-3p 3.195508149 1.56E-11 hsa-miR-4731-3p -8.256214283 3.30E-10 

hsa-miR-1914-3p 3.158653464 1.64E-11 hsa-miR-4498 -7.493946518 3.51E-10 

lnRNAs 

PYCR1 26.17287 6.97E-13 LOC388282 -6.453134074 3.18E-14 

C1orf151-NBL1 19.29293 3.88E-12 ZCCHC16 -14.2214829 9.67E-14 

MPZL1 5.314743 7.72E-12 PEBP1 -5.938094283 1.02E-12 

PKM2 20.11221 9.57E-12 CYP2B6 -17.87659421 1.64E-12 

TRIM59 19.83532 1.27E-11 GNMT -111.4304721 2.18E-12 

ELF4 6.062866 1.65E-11 SCP2 -17.3877578 3.52E-12 

GSTP1 10.62949 1.87E-11 C1RL -6.105036836 4.02E-12 

ITPR3 20.25211 1.93E-11 CLEC4M -30.06472797 4.18E-12 

PFKP 18.50701 2.16E-11 MTMR14 -4.169863043 5.18E-12 

OSBPL3 9.713559 2.99E-11 PLIN5 -12.04197398 7.47E-12 
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functional location in cells, and related biological 

processes (15). To determine the GO terms of 

significantly downregulated and upregulated DEGs, 

enrichment analysis was performed to assess 

overrepresented GO categories using Biological 

Network Gene Ontology (BiNGO) tool in Cytoscape 

(16, 17). Categories with false discovery rate (FDR) 

<0.05 (p < 0.05) were considered as significantly 

annotated. 

Additionally, KEGG (Kyoto Encyclopedia of Genes 

and Genomes) pathway enrichment analysis was 

performed using the database for annotation, 

visualization, and integrated discovery (DAVID, 

https://david.ncifcrf.gov/) (18, 19). KEGG pathways 

with p <0.05 were considered statistically significant 

for the analyzed category of genes.  

Protein-protein interaction (PPI) 

network for DEGs, module analysis, 

and hub gene identification 
Identified DEGs were queried in the STRING v11.0 

database, and a protein-protein interaction network was 

created with an interaction score of medium confidence 

(score = 0.4). This network was imported and 

visualized in Cytoscape v3.7.1 (17). Potential hub 

nodes were determined using cytoHubba, employing a 

local metric (i.e. node degree) and global metric (i.e. 

closeness centrality, betweenness centrality, and stress 

centrality) approach (20). The overlapping genes in the 

top 20 nodes of the four parameters were selected as 

hub genes in GBC. Also, significant modules in the 

network were identified using the molecular complex 

detection clustering algorithm (MCODE) (21). 

 
Figure 2. Gene ontology and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) in gallbladder cancer 

(GBC). [2A, 2D], Biological Network Gene Ontology (BiNGO) tool in Cytoscape was used to perform gene ontology analysis 

which classified upregulated (2A) and downregulated (2B) genes in GBC into categories based on their molecular function, 

biological processes, and cellular location. Each node represents an enriched gene ontology (GO) term. Higher numbers of genes 

result in larger nodes in the network, and color intensity signifies statistical significance {node color ranges from white (not 

significantly over-represented genes) to yellow (p=0.01) to dark orange (p=0.05) magnitude smaller than 10-5)}; [2B, E], Detailed 

GO biological processes enriched in upregulated (2B) and downregulated DEGs (2E) in GBC; [2C,F], The top ten significantly 

enriched KEGG pathways of upregulated (2C) and downregulated DEGs (2F). KEGG pathway enrichment analysis of the DEGs 

was done by the DAVID (database for annotation, visualization, and integrated discovery) database, with p<0.05 considered as 

statistically significant. 

 
 

https://david.ncifcrf.gov/
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MCODE identifies protein complexes by detecting 

heavily connected regions in the PPI network and has 

been reported to have higher precision than other 

module predictors (22). Significant modules in the PPI 

network were identified using MCODE, with node 

score cut-off = 0.3, K-Core = 4, and degree cutoff = 2, 

as reported previously (23–25). Finally, the functional 

and pathway enrichment of DEGs in each module was 

done using DAVID with a cut-off of p <0.05. 

Target prediction of identified 

DEmiRNAs 
Target genes for the identified DEmiRNAs were 

predicted using miRWalk2.0, a database of predicted 

and experimentally validated miRNA-target 

interactions (26). We considered only the unique 

targets of upregulated and downregulated DEmiRNAs 

for further analysis, excluding genes targeted by both 

types of DEmiRNAs. The predicted targets were 

compared to the identified DEGs from our study, and 

overlapping genes with an opposite trend in expression 

compared to its associated DEmiRNA were selected; 

considered targets of upregulated miRNAs should be 

downregulated in expression and vice-versa. 

Prediction of DEGs-DEmiRNAs-

DElncRNAs regulatory interactions 
miRNA-lncRNA interaction data was obtained from 

DIANA-LncBase Experimental v.2, a database 

containing low/high throughput, direct/indirect 

experimentally supported interactions (27). The 

DEmiRNAs identified by our study were mapped to the 

database to identify their corresponding regulatory 

lncRNAs. These lncRNAs were then mapped to the 

identified DElncRNAs from our study, and lncRNAs 

common to both sets, with an opposite trend in 

expression compared to that of the associated 

DEmiRNAs, were identified. The regulatory interaction 

network showing possible gene-miRNA-lncRNA 

interactions in GBC was created and visualized using 

Cytoscapev3.7.1.  

Results 

Identification of candidate DEGs 

involved in GBC 
GSE62335 and GSE74048 contain expression data 

of genes and lncRNAs, six samples of GSE132223 

contain expression data of genes, GSE104165 and 

GSE90001 contain expression data of miRNAs, and 

GSE76633 contains expression data of lncRNAs. A 

total of 64 GBC samples and 32 controls from multiple 

centers were included for this integrated analysis. 

After meta-analyzing the dataseries for DEGs, 351 

genes were identified as significantly differentially 

expressed in all three analyzed dataseries. Out of these, 

185 DEGs were downregulated and 166 were 

upregulated in expression (supplementary material 1). 

Table 2 summarizes the top ten upregulated and 

downregulated DEGs identified in GBC compared to 

controls, ranked by their p-values. These 351 DEGs 

were considered as candidate genes for further analysis 

in the current study. 

GO and KEGG pathway enrichment 

of identified DEGs 
GO and KEGG pathway enrichment analyses were 

performed for the identified DEGs to define the 

associated deregulated functions and pathways in GBC. 

Upregulated DEGs were mostly involved in the 

molecular function of “catalytic activity” (39.74%) 

(Figure 2A), while downregulated DEGs were majorly 

involved in “binding” processes (90.79%) (Figure 2D), 

of which “glycosaminoglycan binding” (4.83%) and 

“fibroblast growth factor receptor binding” (2.76%) 

were the most enriched categories. Upregulated DEGs 

were mostly localized in the cytoplasm (41.82%), 

membrane (36.36%), and extracellular space (7.28%) 

(Figure 2A), while downregulated DEGs were localized 

mostly in membrane (50.26%), extracellular space 

(14.15%), and proteinaceous extra cellular matrix 

(7.33%) (Figure 2D). The upregulated DEGs were 

mostly enriched in the biological process of cellular 

biosynthetic processes (22.9%), positive regulation of 

ligase activity (3.82%), positive regulation of ubiquitin-

protein ligase activity (3.82%), protein amino acid N-

linked glycosylation (3.05%), and positive regulation of 

blood coagulation (2.29%) (Figure 2B), while 

downregulated DEGs were enriched in developmental 

processes (41.13%), signaling (37.59%), cell surface 

receptor linked signaling (26.24%), fibroblast growth 

factor receptor signaling (2.84%), positive regulation of 

peptidyl-tyrosine phosphorylation (2.84%), protein 

localization at cell surface (2.13%) and homotypic cell-

cell adhesion (1.42%) (Figure 2E). 

https://journals.sbmu.ac.ir/ghfbb/index.php/ghfbb/article/view/2292/1435
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Overall, 43.2% of upregulated DEGS and 32.8% of 

downregulated DEGs were mapped to the KEGG 

database. The most significantly enriched pathway 

associated with upregulated DEGs was “protein 

processing in endoplasmic reticulum,” while “cell 

adhesion molecules (CAMs)” was the most enriched 

category for downregulated DEGs. KEGG pathways 

with a significance level of p≤0.05 with percentage of 

detected genes are shown in Figure 2C, 2F. 

Construction of PPI network, hub 

genes identification, and module 

analysis 
A PPI network was created for the identified DEGs 

to infer possible interactions. A total of 349 DEGs were 

mapped to the network, resulting in a GBC-specific PPI 

network consisting of 349 nodes and 566 edges with a 

confidence score of more than 0.4 (Figure 3A, 

Supplementary material 2). The network had 

interactions with a PPI enrichment p-value of 2.22e-16, 

which is significantly higher than expected for a 

random set of proteins, implying that the proteins were 

partially biologically associated, suggesting the 

putative interactions to be meaningful. The degree of a 

node represents the number of interactions the node has 

with other nodes. The identified DEGs displayed a 

broad distribution of degrees, with highest and lowest 

degrees of 22 (FGF2) and 1 (multiple genes), 

respectively. The average degree value was 4, which 

indicates that the genes were functionally related and in 

a well-connected network.  

The centrality parameter of a network indicates the 

importance of a node in holding the network together. 

A higher parameter value of a node signifies its higher 

relevance in connecting the network. Four parameters, 

viz., degree centrality, stress centrality, closeness 

centrality, and betweenness centrality, were computed 

for the network, and the top 20 nodes for each 

parameter were compared. The overlapping genes of 

these parameters were considered as hub nodes of the 

network. These included Fibroblast growth factor 2 

(FGF2), Cyclin-dependent kinase 1 (CDK1), ribophorin 

II (RPN2), Protein transport protein Sec61 subunit 

 
Figure 3. Protein-protein-interaction network of the differentially expressed genes (DEGs) and modular analysis. [A] The 351 

differentially expressed genes identified in GBC were retrieved from the STRING v11.0 (Search Tool for the Retrieval of 

Interacting Genes/Proteins Interacting Genes) database, and the resulting protein-protein interaction (PPI) network was visualized 

in Cytoscape v3.7.1 with an interaction score of 0.4. Upregulated and downregulated genes are depicted in red and green colors in 

the PPI network, respectively. [B] Four significant modules were identified form the PPI network using MCODE clustering 

algorithm. Module 1 consisted of 12 nodes and 54 edges, module 2 consisted of 8 nodes and 26 edges, module 3 consisted of 11 

nodes and 22 edges, and module 4 had 29 nodes and 57 edges. All genes in modules 1, 2, and 3 were upregulated, with the 

exception of CHRDL1 in module 3. Module 4 had a higher number of downregulated genes. Hub genes of the respective modules 

are represented as rhombuses. 

https://journals.sbmu.ac.ir/ghfbb/index.php/ghfbb/article/view/2292/1435
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alpha isoform 1 (SEC61A1), SRY (sex determining 

region Y)-Box 2 (SOX2), calreticulin (CALR), nerve 

growth factor receptor (NGFR), and neural cell 

adhesion molecule 1 (NCAM). FGF2, SOX2, NGFR, 

and NCAM were downregulated in expression, while 

CDK1, RPN2, SEC61A1, and CALR were upregulated. 

In interaction networks, nodes that are highly 

connected (modules) are recognized as being involved 

in the same pathways. These highly connected modules 

are often of clinical importance, and their respective 

hub genes have been found to play key roles in multiple 

diseases, including cancer (28). We obtained four 

significant modules from the entire network using the 

MCODE clustering algorithm (Fig. 3B). Module 1 had 

a cluster density score of 9.818 with 12 nodes and 54 

edges; module 2 had a score of 7.429 with 8 nodes and 

26 edges; module 3 had a score of 4.400 with 11 nodes 

and 22 edges; and module 4 had a score of 4.071 with 

29 nodes and 57 edges. 

Furthermore, analysis revealed that the hub genes 

were distributed mostly in modules 1 (RPN2, 

SEC61A1, CALR) and 4 (FGF2, SOX2, NGFR), with 

 
Figure 4. DEG-DEmiRNA-DElncRNA regulatory network in gallbladder cancer based on predicted and/or experimentally proven 

targets and their expression profile in GBC. Rectangular nodes represent differentially expressed genes (DEGs) in gallbladder 

cancer, rhombus nodes represent differentially expressed microRNAs (DEmiRNAs) associated with these DEGs, and triangle 

nodes represent differentially expressed long non-coding RNAs (DElncRNAs) associated with the DEmiRNAs. Red color nodes 

are upregulated, and green color nodes are downregulated in expression. A total of 46 DElncRNAs was found to be associated with 

28 DEmiRNAs, which in turn could target 27 DEGs in GBC.  
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one hub gene in module 2 (CDK1) and none in module 

3. KEGG pathway enrichment showed that genes in 

module 1 were significantly enriched in protein 

processing in endoplasmic reticulum, module 2 in cell 

cycle, and module 4 in Ras signaling pathway. No 

significant pathway was mapped to module 3. The four 

modules shared no pathways, indicating that they have 

relatively independent functions. 

Identification of differentially 

expressed non-coding RNAs  
To investigate the regulatory control of non-coding 

RNAs on the DEGs, we identified DEmiRNAs and 

DElncRNAs in GBC compared to controls. A total of 

787 DEmiRNAs were identified, of which 299 were 

downregulated, while 488 had upregulated expression 

(Supplementary material 3). The most significantly 

upregulated DEmiRNA was hsa-miR-143-3p, and hsa-

miR-4745-5p was the most downregulated.  

A total of 7436 lncRNAs were found to be 

differentially expressed in GBC, of which 3127 were 

downregulated and 4309 were upregulated in 

expression (Supplementary material 4). PYCR1 and 

LOC388282 were the most significantly upregulated 

and downregulated DElncRNAs, respectively, in the 

current study. Table 2 summarizes the top ten 

upregulated and downregulated DEmiRNAs and 

DElncRNAs, ranked by their p-values. 

Table 3. A DEG-DEmiRNA-DElncRNA interactions table showing regulatory DEmiRNAs in GBC which are associated with 

DEGs identified in GBC, and DElncRNAs associated with these DEmiRNAs. 

DEGs DEmiRNAs associated with DEG DElnRNAs associated with DEmiRNAs 

ASPA hsa-miR-551b-5p SNHG14 

hsa-miR-629-3p LINC00657 

BRI3 hsa-miR-484 APOC4-APOC2, SNORD3A, THAP9-AS1, FLJ32255 

C1orf85 hsa-miR-652-3p RMRP, SNORD3A, SNORD3C, TERC 

COX17 hsa-miR-186-5p PVT1 

CPED1 hsa-miR-10a-5p H19 

EFR3A hsa-miR-19b-3p ANKRD10-IT1 

GPR64 hsa-miR-21-5p ZBED3-AS1, LINC00657 

HSD17B8 hsa-miR-16-5p THAP9-AS1, TERC, FLJ31356 

IL1RL1 hsa-miR-26b-5p LINC00657, CTB-89H12.4, MEG3 

KIF5C hsa-miR-222-3p LINC00657, CTB-89H12.4, H19 

hsa-miR-376a-3p SNHG14, LINC00657, MEG3 

KRT14 hsa-miR-124-3p TERC, SNORA71B 

LRRTM1 hsa-miR-9-5p MAGI2-AS3, PRKCQ-AS1, LOC284581, MEG8, LINC00641, 

MIR143HG, LINC00473, SNHG14, BDNF-AS, SOX2-OT, 

TSNAX-DISC1, CTB-89H12.4, WDFY3-AS2, MEG3 

MRPL14 hsa-miR-324-5p RPPH1, HMGN2P46, FLJ31356 

MT1M hsa-miR-26b-5p LINC00657, CTB-89H12.4, MEG3 

NCAM1 hsa-miR-200c-3p TP73-AS1, CTB-89H12.4, ZNRD1-AS1, H19 

hsa-miR-375 MEG8, LINC00641, SNHG14, LINC00657, SNORD116-20, 

ZNF876P 

NRN1 hsa-miR-26b-5p LINC00657, CTB-89H12.4, MEG3 

NTNG1 hsa-miR-26b-5p LINC00657, CTB-89H12.4, MEG3 

PALMD hsa-miR-98-5p TTN-AS1 

PDZRN3 hsa-miR-197-3p LINC00657, CTB-89H12.4 

PMP2 hsa-miR-7-5p MAGI2-AS3, MTHFS, LINC00641, FTX, MIAT, SNHG14, JPX, 

CROCCP2, LINC00657, CTA-445C9.15, CTB-89H12.4, MEG3 

RADIL hsa-miR-615-3p CROCCP2, LINC00657, H19 

hsa-miR-766-3p LOC284581, LINC00657, CTB-89H12.4, H19, RGS5, ZNF876P, 

MEG3 

RNF150 hsa-miR-1260b PRKCQ-AS1, LINC00657 

hsa-miR-148b-3p MAGI2-AS3, TTN-AS1, ADAMTS9-AS2, LINC00641, 

MIR143HG, SNHG14, SOX2-OT, JPX, CTB-89H12.4, H19, MEG3 

S100B hsa-miR-29b-3p MAGI2-AS3, LINC00263, MIAT, SNHG14, SOX2-OT, 

LINC00657, CTB-89H12.4, H19 

SALL4 hsa-miR-107 THAP9-AS1 

SDF2 hsa-miR-132-3p THAP9-AS1, FLJ31356, ANKRD36BP2,  

SH3GL2 hsa-miR-26b-5p LINC00657, CTB-89H12.4, MEG3 

UAP1 hsa-miR-155-5p LOC550643, FLJ32255 
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Identification of DEmiRNAs-DEGs 

pairs  
Target genes for the identified DEmiRNAs were 

predicted using miRWalk2.0. A total of 13,653 targets 

were predicted for the 735 DEmiRNAs, of which 9349 

genes were possible targets of both upregulated and 

downregulated DEmiRNAs and, thus, were excluded 

from further analysis. A total of 2014 unique targets for 

upregulated DEmiRNAs and 2290 unique targets for 

downregulated DEmiRNAs were identified from the 

predicted targets. 

The identified gene targets were mapped to the 351 

DEGs previously identified in the current study. 

Because miRNAs inhibit the expression of their target 

genes, DEG-DEmiRNA pairs having opposite 

expression patterns were screened. We identified 20 

upregulated DEGs that were targets of 18 

downregulated DEmiRNAs, of which the highest 

number of DEGs were targeted by hsa-miR-26b-5p (5 

DEGs). Moreover, 23 downregulated DEGs were found 

to be targets of 28 upregulated DEmiRNAs, of which 

hsa-miR-335-5p targeted the highest number of DEGs 

(6 DEGs) (Supplementary material 5).  

Identification of DElncRNAs 

associated with the regulatory 

DEmiRNAs of DEGs 
DIANA-LncBase Experimental v.2 database was 

used to identify target miRNAs for the 7497 

DElncRNAs identified in the current study. A total of 

111 DElncRNAs were mapped to the databases which 

were found to be targeting 723 miRNAs. Out of 

these723 miRNAs, 313 were found by the current study 

to be differentially expressed. Moreover, 92 

DElncRNAs had an opposite trend in expression to 

their corresponding miRNAs, of which 63 were 

downregulated and 29 were upregulated in expression 

(Supplementary material 6). DEGs-DEmiRNA and 

DEmiRNAs-DElncRNA pairs, shown in supplementary 

materials 5 and 6, indicate that the identified DEGs 

were regulated by several non-coding RNAs. We 

further identified possible DEG-DEmiRNA-

DElncRNA interactions based on expression status and 

predicted associations. LINC00657 and CTB-89H12.4 

were associated with the highest number of 

DEmiRNAs (12 and 9, respectively), which in turn 

were targeting 10 and 9 DEGs, respectively. Overall, 

we found a total of 46 DElncRNAs to be associated 

with 28 DEmiRNAs, which in turn were targeting 27 

DEGs in GBC (Figure 4, Table 3). 

Discussion 

Despite its aggressive nature and the lack of early 

detection techniques, GBC is still an orphan 

gastrointestinal cancer, and its underlying molecular 

mechanisms remain poorly understood. The current 

study used a meta-analysis-based bioinformatics 

approach to analyze microarray datasets and provide a 

statistically robust and clearer view of the gene, 

miRNA, and lncRNA expression profiles and their 

regulatory interdependence during GBC. We identified 

351 DEGs in GBC compared to controls, of which 185 

were downregulated and 166 were upregulated in 

expression. Recently, Ren et al. (2021) explored 

differentially expressed coding, non-coding, and 

circular RNAs in serum-derived exosomal samples of 

gallbladder cancer compared to xantho-granulomatous 

cholecystitis. They identified 1,940 mRNAs and 317 

lncRNAs to be upregulated in plasma-derived 

exosomes of GBC (29). Among these, multiple genes 

such as FOS, SEC61G, CXCL5, FOXD3, and IRAK1 

were also identified as differentially expressed in this 

study (29). The most significantly upregulated DEG in 

the current study, CEMIP, is a cell migration-inducing 

hyaluronan protein well known for promoting the 

motility, metastasis, and invasiveness of different cell 

types. It has been repeatedly associated with human 

carcinogenesis and was reported to be highly expressed 

in multiple cancers (30–34). It is has also been shown 

to have significantly improved diagnostic value 

compared with the traditional marker CA 19-9 alone in 

pancreatic cancer (35). The significantly higher 

expression of CEMIP observed in GBC suggests it 

plays an important role in GBC and can be more 

thoroughly investigated. The most significantly 

downregulated gene of the current study, CHRDL1, has 

been shown to be downregulated and associated with 

poor survival rate in gastric cancer and lung 

adenocarcinomas (36, 37). It is a secreted antagonist of 

bone morphogenetic protein (BMP), which inhibits 

BMP binding to its receptor (BMPR), thereby blocking 

a series of signaling responses and causing proliferation 

and invasiveness of cancer cells (38). However, to the 

best of our knowledge, the roles of CEMIP and 

https://journals.sbmu.ac.ir/ghfbb/index.php/ghfbb/article/view/2292/1435
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CHRDL1 have not been reported in GBC, and 

therefore, both of these genes could be possible novel 

targets for GBC diagnosis or prognosis. Apart from the 

most upregulated and downregulated genes, there is an 

interest in the role of hub genes, as their interactions 

with multiple nodes in the network indicate their 

potential for broad-spectrum effects during cancer (39). 

From the PPI network, we identified 8 hub genes 

(FGF2, CDK1, RPN2, SEC61A1, SOX2, CALR, 

NGFR, and NCAM), of which only SOX2, NCAM, 

CDK1, and CALR have been previously reported as 

involved in GBC (40). Although studies on the role of 

these genes are scarce, few genes have been recently 

reported. For example, deregulation in cell cycle is a 

primary and key step towards carcinogenesis, and 

CDK1 is a well-known cell cycle regulator whose 

upregulation has been reported in multiple cancers (41, 

42). Although a few studies have reported deregulation 

in the cell cycle machinery in GBC, one recent study 

reported CDK1 activation via GPRIN1 as an important 

factor in promoting GBC progression (43). Similarly, 

SOX2, an undifferentiated cell marker, is responsible 

for maintaining stem cells in multiple cancers, and its 

deregulation, especially overexpression, has been 

reported to be oncogenic (44). However, few studies 

have reported the association between SOX2 

downregulation and shorter survival time, poor 

prognosis, and less responsiveness to treatment in 

gastric cancer (45), and only one study has reported its 

potential role in GBC treatment (46). Recent reports 

have declared CALR to be an oncogene in GBC and 

that inhibiting CALR in GBC sensitizes the cancer to 

gemcitabine by inhibiting the PI3K/Akt pathway (47). 

Despite their established functions in other cancers, 

FGF2, RPN2, SEC61A1, and NGFR have not been 

reported in GBC to date. Considering that most of the 

hub genes were present in modules 1, 2, and 4 of the 

network, and that numerous studies have reported key 

roles of these genes in multiple cancers, we theorize 

that these genes can potentially play important roles in 

GBC carcinogenesis, and therefore, further 

investigation is warranted. 

GO enrichment analysis revealed that the 

upregulated DEGs in the current study were associated 

with cytoplasmic proteins and involved in molecular 

functions of catalytic activity as well as biological 

processes of positively regulating ubiquitin-protein 

ligase activities, N-linked glycosylation (NLG) of 

amino acids, and blood coagulation. KEGG pathway 

analysis revealed the highest alterations in “protein 

processing in endoplasmic reticulum.” The process of 

ubiquitylation-mediated protein degradation regulates 

the turnover and activity of many proteins, and thus has 

important implications in various cellular processes. As 

anticipated, ubiquitin ligases are frequently found to be 

upregulated in cancer (48, 49). The current results 

emphasize the oncogenic role of ubiquitination in GBC, 

as genes that positively regulate ubiquitin ligase 

activities are found to be upregulated. Furthermore, 

genes involved in promoting NLG were found to be 

upregulated in our study. Glycosylation is yet another 

neoplasia-linked, post-translational epigenetic 

modification which affects the stability, structure, 

folding patterns, and adhesion properties of a protein. 

Aberrant glycosylation of cancer-associated proteins 

may alter the biological properties of cancer cells, 

allowing them to metastasize. Previous studies have 

reported NLG inhibition as a possible strategy for 

cancer treatment (50); however, its role in GBC 

progression and initiation is less well understood, with 

only one report hinting at the role of O-glycosylation in 

GBC (51). Furthermore, in the current study, genes 

involved in the positive regulation of blood coagulation 

were found to be upregulated. High expression of 

thrombosis-initiating factor and its association with 

cancer aggressiveness and progression is well 

documented (52); in fact, thrombosis is often the first 

clinical presentation in many tumors (53). Notably, 

over 90% of cancer patients, including those with GBC, 

show aberrations in coagulation tests in vitro (54, 55). 

The identified downregulated DEGs were part of 

membrane proteins, involved in binding-related 

molecular functions, especially glycosaminoglycan 

binding and fibroblast growth factor receptor binding. 

In addition, in the biological process category, 

downregulated DEGs were involved in developmental 

processes such as cell differentiation, signaling 

processes such as cell surface receptor linked signaling 

pathway and fibroblast growth factor receptor signaling 

pathway, localizing protein at cell surface, and 

homotypic cell-cell adhesion. KEGG pathway analysis 

revealed that downregulated genes were mostly part of 

“cell adhesion molecules (CAMs).” Cell-cell adhesion 

is an important biological process often found to be 
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deregulated and reduced in cancer, enabling the cell to 

invade and metastasize. Loss of cell-cell adhesiveness 

has been considered as a key morphological 

characteristic of malignant tumors (56), and studies 

have also reported the role of cell adhesion molecules 

in boosting the invasive capabilities of GBC cells (57). 

The observed downregulation of genes involved in cell-

cell adhesion in the current study is consistent with 

previous reports and further highlights the importance 

of cell-cell adhesion in GBC. Glycosaminoglycan 

(GAG) chains are present in the surface of almost all 

cells, and their ability to bind different growth factors, 

cytokines, and enzymes has been implicated in cancer 

progression, invasion, and metastasis. Interestingly, 

GAGs have also been reported to be inhibitors of tumor 

progression depending on the type of interaction and 

cancer (58). On the other hand, fibroblast growth factor 

signaling regulates key biological processes involved 

with tissue homeostasis (59). The downregulation of 

genes involved in cell differentiation in the current 

study suggests the presence of undifferentiated tumor 

cells in GBC, which can greatly contribute to the 

aggressiveness of this cancer (60).  

After analyzing the DEGs in GBC, we identified 

their associated, regulatory non-coding RNAs by 

integrating their expression profiles and predictions 

using bioinformatic tools. A total of 46 DEmiRNAs 

were identified which could target 43 DEGs. Eight of 

these DEmiRNAs (hsa-miR-155-5p, hsa-miR-200c-3p, 

hsa-miR-29b-3p, hsa-miR-30a-3p, hsa-miR-30e-3p, 

hsa-miR-324-5p, hsa-miR-335-5p, hsa-miR-98-5p) 

have been previously associated with poor survival rate 

and the aggressive nature of GBC (61, 62). The 

remaining 38 DEmiRNAs have not been reported in 

GBC, but all of them have been previously reported in 

cancers of multiple etiologies. Moreover, hsa-miR-26b-

5p and hsa-miR-335-5p were found to be regulating the 

highest number of DEGs in the current study, 

suggesting their potential key regulatory roles during 

GBC. Both miRNAs have also been recently reported 

to be involved in circRNA-miRNA regulation in GBC 

(29). 

A growing number of studies have suggested the 

involvement of lncRNAs in GBC carcinogenesis (63). 

Recently, two studies, those of Zang et al. (2018) and 

Kong et al. (2019), utilized GSE62335 and GSE76633 

expression dataseries independently and identified 287 

and 128 mRNA-lncRNA pairs in GBC, respectively 

(64, 65). We combined the three lncRNAs expression 

dataseries and cumulatively identified 7497 significant 

DElnRNAs in GBC. Few DElncRNAs identified in our 

study have been previously reported and 

experimentally validated in multiple cancers, including 

GBC. For instance, expression of CRNDE was 

significantly high in the current study, which is in 

accordance with previous reports of high expression in 

GBC (66). Similarly, MEG3 has been reported as a 

tumor suppressor in many cancers, including GBC (67), 

and was downregulated in the current study. We further 

combined the expression and prediction data to build 

the lncRNAs-miRNA-gene interaction network. 

Twenty-seven DEGs were found to be possibly 

regulated by 28 DEmiRNAs, which in turn were 

associated with 46 DElncRNAs. LINC000657 was 

found to target the highest number of DEmiRNAs and 

DEGs in the network. It was predicted to target hsa-

miR-26b-5p, which in turn was targeting the highest 

number of DEGs. LINC000657 has been previously 

reported to be an inhibitor of hsa-miR-615-3p in 

esophageal squamous cell cancer (68). A few other 

interactions predicted in the network have also been 

previously reported in other cancers and validated, 

which indicates the reliability of the network. For 

example, the regulatory role of PVT1 in inhibiting hsa-

miR-186-5p and promoting tumorigenesis has been 

previously reported in hepatocellular carcinoma (69). In 

our network, PVT1 was found to be a regulator of hsa-

miR-186-5p, which in turn was targeting COX17. 

Furthermore, three lncRNAs of the network (H19, 

MEG3, and PVT1) have been previously reported in 

GBC (70). These were found to interact with 7, 5, and 1 

DEmiRNAs, respectively, which in turn were targeting 

6, 5, and 1 DEGs, respectively.   

Conclusion 
The current study identified 351 DEGs, 787 

DEmiRNAs and 7436 DElncRNAs in GBC. We also 

found 10 GBC-specific DEGs, CEMIP, CHRDL1, 

FGF, CDK1, RPN2, SEC61A1, SOX2, CALR, NGFR, 

and NCAM, from the cumulative network and 

expression data. These could be the subjects of more 

in-depth studies to delineate their specific roles in 

GBC. We predicted DEG-DEmiRNA-DElncRNA 

interactions in GBC and found 27 DEGs to be regulated 
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by 28 DEmiRNAs, which were possible targets of 46 

DElncRNAs. The regulatory interactions predicted in 

the network can be further explored to identify novel 

gene targets and to understand the mechanisms 

underlying GBC development. Multiple candidates and 

interactions identified in the current study have never 

been reported in GBC and warrant further studies. 

While the findings of the current study are predictive 

and require further validation, some of the identified 

candidates have been experimentally validated and 

reported to be crucial in carcinogenesis of other 

etiologies. This study improved our understanding of 

the human transcriptomic changes during GBC, 

reaffirmed previously reported findings, and identified 

new candidate genes and regulatory networks of 

prognostic and diagnostic value. 
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