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ABSTRACT 
Colorectal cancer (CRC) is the second leading cause of cancer death. Progress has been made in the development of 
chemotherapy for advanced CRC. Targeted therapies against VEGF or EGFR are now commonly used. However, many 
cases show that tolerance develops to such treatments; therefore, new strategies are required to replace or complement 
current therapies. Nuclear factor-κB (NF-κB) transcription factors play a key role in many physiological processes such 
as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that 
aberrant regulation of NF-κB and the signaling pathways that control its activity are involved in cancer development and 
progression, as well as in resistance to chemo- and radio- therapies. Hence, anti-NF-κB therapy may rescue many cases 
of CRC and should be considered as a therapeutic target. 
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Introduction  
1Cancer is a leading cause of death in 

industrialized countries. Although mortality rates 
have declined in recent years due to earlier detection 
and more options in treatment, most cancers remain 
incurable. Colorectal cancer (CRC) is the third most 
commonly diagnosed cancer in the world but more 
than half of all deaths from the disease occur in the 
more developed regions of the world (1, 2). The 
symptoms of CRC depend on the location of tumor 
in the bowel and whether it has spread elsewhere in 
the body. Symptoms and signs are divided into local, 
constitutional, and metastatic. Certain factors 
increase a person's risk of developing the disease 
including age, polyps of the colon, history of cancer, 
heredity, smoking, diet, physical inactivity, viruses, 
low levels of selenium, inflammatory bowel disease, 
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environmental factors, exogenous hormones, and 
alcohol (3-5). 

In recent years, great progress has been made in 
the development of chemotherapy for advanced 
CRC and new treatment options are now available. 
For example, 5-fluorouracil (5-FU) was reformulated 
(6) and two new drugs, oxaliplatin and irinotecan, 
were investigated as adjunctive therapies (7). 
Targeted therapies against vascular endothelial 
growth factor (VEGF), bevacizumab, or epidermal 
growth factor receptor (EGFR), cetuximab, are now 
commonly used as treatments for metastatic CRC (8-
10). Meanwhile, many cases show that tolerance 
develops to such treatments (11). Therefore, 
treatment of advanced CRC requires new strategies 
to replace or complement current therapies. In this 
sense, targeting transcription factors has attracted 
growing attention. Nuclear factor-κB (NF-κB) is a 
transcription factor that participates in the induction 
of several genes for cytokines and enzymes that play 
important functional roles in various cell types (12). 
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Since the identification of the NF-kB transcription 
factors and the cloning of the NF-kB and IkB-coding 
genes, a large number of experimental evidence has 
been accumulated demonstrating that these factors 
play a major role in the development and progression 
of various human cancers (13-15). The NF-kB 
signaling pathway is implicated in a variety of 
physiological and pathological processes. Moreover, 
there is growing evidence indicating the relationship 
between cancer development and NF-kB (16-18). 

 
NF-κB transcription factors and 
their signaling pathways 

In mammals, the NF-κB family is composed of 
five members, RelA (p65), RelB, cRel (Rel), NF-
κB1 (p50 and its precursor p105) and NF-κB2 
(p52 and its precursor p100). 

 

 
Figure 1. NF-κB signaling pathways 

 
These proteins form homo- and heterodimeric 

complexes, the activity of which is regulated by two 
major pathways. The first one, known as the classical 
NF-κB activation pathway, mainly applies to RelA: 

p50 dimers which under non-stimulated conditions 
are sequestered in the cytoplasm through interactions 
with inhibitory proteins of the IκB family. Following 
stimulation with a broad range of stimuli such as 
TNF-α (tumor necrosis factor- alpha) or IL-1 
(interleukin- 1), viruses, genotoxic agents and ionizing 
radiation, the IκB molecules are phosphorylated by 
the IκB kinase complex (IKK) at specific serine 
residues leading to their ubiquitination and 
degradation by the proteasome pathway. RelA:p50 
dimers are subsequently released and free to 
translocate to the nucleus where they activate 
transcription of various target genes (19). This 
pathway plays a major role in the control of innate 
immunity and inflammation (20, 21). The second 
pathway, the so-called alternative NF-κB signaling 
pathway, is stimulated by a more restricted set of 
cytokines that all belong to the TNF superfamily (e.g. 
BAFF, CD40L, LTβ). This pathway involves the 
upstream kinase NF-κB-inducing kinase (NIK) which 
activates IKKα, thereby leading to the 
phosphorylation and proteasome-dependent 
processing of p100, the main RelB inhibitor, thus 
resulting in RelB:p52 and RelB:p50 nuclear 
translocation and DNA binding (22-25).  

Most importantly, all studies point out to a crucial 
role for the alternative pathway in controlling the 
development, organization and function of secondary 
lymphoid organs and B-cell maturation and survival 
(26, 27). Activation of NF-κB pathways relies on the 
inducible phosphorylation of IκB inhibitory proteins 
(IκBα for the classical pathway and p100 for the 
alternative pathway) by the IKK complex and its 
subunits. IKK is composed of two catalytic subunits, 
IKKα and IKKβ, and a regulatory subunit, 
NEMO/IKKγ. Disruption of genes encoding 
individual subunits has demonstrated that IKKβ and 
NEMO/IKKγ are required for activation of the 
classical NF-κB pathway by inflammatory signals, a 
pathway in which IKKα does not play an essential 
role. In contrast, RelB:p50 and RelB:p52 activation 
is absolutely dependent on IKKα, but not on IKKβ 
or NEMO/IKKγ (28). 
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Constitutive activation of NF-kB in 
CRC 

It has been reported that induction of NF-kB 
activation leads to the resistance to chemotherapy. 
Constitutively activated NF-kB can often be seen in 
various cancer cells, cell lines, xenograft animal 
models or clinical sites. As for CRC, constitutively 
activated NF-kB was observed in 66% of CRC cell 
lines and 40% of human CRCs (29, 30). Other 
reports found constitutively activated NF-kB in 
almost 60 to 80% of CRCs (31).  

 

 
Figure 2. Constitutive NF-kB activation  

 
Constitutively activated NF-kB promotes the 

proliferation of cancer cells and rescues the cancer 
cells from cell death. When the constitutive 
activation of NF-kB was inhibited by knocking 
down IKKg with siRNA (KD cells), greater 
apoptosis was induced in KD cells than in control 
cells by stimulation with TNF-a or 5-FU. In a 
xenograft model of nude mice, the tumor volume of 
KD cells was significantly smaller than the tumors of 
control cells. In the tumor of the KD cells, more cell 
death was observed than in the tumors of control 
cells. Since the constitutive activation of NF-kB is 
present in a remarkable number of patients with 
CRC, many patients who showed resistance to 

chemotherapy could account for the constitutive 
activation of NF-kB (30, 31). Therefore, anti-NF-kB 
therapy may rescue many cases of CRC. 

 
Novel anti-NF-kB agents 
1. Proteasome inhibitors and bortezomib 

The proteasome is a 26S multiprotein complex 
that is mainly located in the cytoplasm and nucleus. It 
consists of a 19S regulatory subunit and a 20S 
catalytic subunit that contains six unique ATP-
dependent serine protease sites, two of each with 
chymotrypsin, trypsin, and caspase-like activities (32, 
33). 

 

 
Figure. 3. Proteasome degradation cycle 

 
Ubiquitinated proteins are recognized by the 19S 

subunit which results in both the liberation of 
ubiquitin chains that are recycled, and the formation 
of a denatured protein that is transferred to the outer 
ring or the 20S core unit. This outer ring only allows 
such denatured proteins to enter the catabolic site of 
the proteasome where they are hydrolyzed into small 
polypeptides (34). The proteasome inhibitor 
bortezomib is an IV drug that disappears from the 
plasma compartment almost completely within 15 
min of injection but has a long elimination half life 
(>40 h) (35). Clinical dose monitoring is thus 
inferred from the measure of residual proteasome 
activity in blood cells. In general, dose of 1.3 mg/m2 
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inhibits 65% of proteasome activity with a peak 
inhibition at 1 h and a return to baseline activity 
within 48–72 h. Primate experiments have also 
shown that bortezomib is distributed evenly in most 
organs with the notable exception of the CNS in 
areas protected by the blood–brain barrier (36). 

 
2. IKK inhibitors 

Since the activation and nuclear translocation of 
the most commonly expressed NF-kB dimers require 
an IKKb-dependent phosphorylation of their 
cytoplasmic IkB partners, IKK constitutes a key 
target for the development of small NF-kB 
inhibitors. IKK consists of two catalytic (IKKa and 
IKKb) and a regulatory (IKKg or NEMO) subunits. 
The activity of IKKa or IKKb depends on their 
phosphorylation at serine residues located in their 
respective kinase domains that also contains a 
critical cysteine residue. 

 

 
Figure 3. Activation of IKK pathway 

 

A variety of old drugs such as aspirin, salicylates, 
sulindac, sulfasalazine and thalidomide inhibit the 
IKKs catalytic activity. Thiol-reactive drugs such as 
arsenic trioxide (As2O3) and the gold compound 
auranofin alter IKKb Cys-179 and also inhibit IKK-
dependent NF-kB activation (37, 38). As2O3 has 
recently been used in clinical trials against 
promyelocytic leukaemia and solid tumors (39-41) 
with the nuance that several signalling pathways 
may be involved in its anti-tumor effect (42). 
Auranofin is also known to induce apoptosis in 
promyelocytic leukaemia cells (43). 
 
3. The target molecule candidates 

The NF-kB signal starts from ligands such as 
cytokines or LPS (lipopolysaccharide), goes through 
receptors, cytosolic proteins, intranuclear proteins 
and DNA, and arrives at newly produced proteins. 
Targeting the ligands or receptors such as IL-1 and 
its receptors may be useful to some extent. With the 
view of preventing carcinogenesis, an IL-1 receptor 
antagonist was reported to be upregulated in the 
remission of ulcerative colitis (44). In advanced 
CRC, a study reported that a nucleotide 
polymorphism of the IL-1 receptor antagonist gene 
was correlated with the prognosis of CRC. A clinical 
study on the IL-1 receptor antagonist against CRC 
has not been conducted, but it is used in rheumatoid 
arthritis (45). IKKs or IkBs are now the main targets 
of NF-kB inhibitors. Many researchers have made 
various inhibitors attenuating IKKa, IKKb, IKKg or 
IkBa that some of them were effective in animal 
models. According to Hayakawa et al., NEMO 
binding domain peptide (NBD), one of the inhibitors 
of IKKb, exerts chemopreventive effects in CRC 
mice model (46). 

 
Conclusion 

In recent years, surgical resections as well as 
chemotherapy have been the only effective 
therapies in treating CRC, however, not very 
successful. As target therapy will prolong the 
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prognosis of the patients with CRC, therefore, the 
exploration of more useful targets will be of great 
importance. NF-kB signaling is currently a well 
studied area that recently has become an obvious 
target of cancers. It appears to be a promising 
focus and deserves further investigations for use 
as a therapeutic target. Although NF-kB inhibitors 
have been used clinically, they seem to be far from 
ideal drugs because of their harmful side effects. 
As aforementioned, NF-kB is a key element of 
various physiological activation in the whole 
body, therefore, some toxic side effects of 
inhibiting NF-kB may be unavoidable. 
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