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ABSTRACT 

Aim: Analysis reconstruction networks from two diseases, NAFLD and Alzheimer`s diseases and their relationship based on systems 

biology methods. 

Background: NAFLD and Alzheimer`s diseases are two complex diseases, with progressive prevalence and high cost for countries. 

There are some reports on relation and same spreading pathways of these two diseases. In addition, they have some similar risk 

factors, exclusively lifestyle such as feeding, exercises and so on. Therefore, systems biology approach can help to discover their 

relationship.  

Methods: DisGeNET and STRING databases were sources of disease genes and constructing networks. Three plugins of Cytoscape 

software, including ClusterONE, ClueGO and CluePedia, were used to analyze and cluster networks and enrichment of pathways. An 

R package used to define best centrality method. Finally, based on degree and Betweenness, hubs and bottleneck nodes were defined.  

Results: Common genes between NAFLD and Alzheimer`s disease were 190 genes that used construct a network with STRING 

database. The resulting network contained 182 nodes and 2591 edges and comprises from four clusters. Enrichment of these clusters 

separately lead to carbohydrate metabolism, long chain fatty acid and regulation of JAK-STAT and IL-17 signaling pathways, 

respectively. Also seven genes selected as hub-bottleneck include: IL6, AKT1, TP53, TNF, JUN, VEGFA and PPARG. Enrichment 

of these proteins and their first neighbors in network by OMIM database lead to diabetes and obesity as ancestors of NAFLD and AD.  

Conclusion: Systems biology methods, specifically PPI networks, can be useful for analyzing complicated related diseases. Finding 

Hub and bottleneck proteins should be the goal of drug designing and introducing disease markers. 
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Introduction  

  1 Alzheimer’s disease (AD) is a neurodegenerative 

disease that is one of the important disease in industrial 
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countries. Based on Alzheimer’s Disease International 

Federation (ADI),at least 46.8 million people are 

affected by dementia worldwide , that anticipated to be 

74.7 million by 2030 and 131.5 million by 2050 (1). 

This disease can be categorized in two forms: early-

onset familial Alzheimer disease (EFAD) (2) and Late-

onset Alzheimer’s disease (LOAD) or non-familial (3). 

EFAD form inheritance dominantly but LOAD  form is 

a complex or multifactorial disease (4). Research on 
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AD showed that  in addition to age and heredity, 

lifestyle is an important factor in the progression of this 

disease (5). On the other hand, lifestyle has an 

important role in producing some diseases such as 

obesity, diabetes and fatty liver (6). Fatty liver diseases 

divided into two forms : alcoholic fatty liver disease 

(AFLD)  and Non-alcoholic fatty liver disease 

(NAFLD), that mainly occurs due to high using of 

Alcohol and fat (6). Non-alcoholic fatty liver disease 

(NAFLD) is one of the most important reasons for liver 

disease in the United States so that 30% of US 

population affected by NAFLD (7). Indeed, as well as 

AD, NAFLD depend on lifestyle and feeding.  

Our previous studies on AD that accomplished by 

meta-analysis in microarray data showed that NAFLD 

has an undoubted relation to AD (8). There are other 

studies about the relation of AD and NAFLD that 

focuses on some common genes (LRP1) (9), cross-

sectional study (10) and AD-Transgenic model (11). 

Protein-protein interaction (PPI) network analysis is 

one of the major fields in systems biology in which 

analyzed complex interactome of proteins as the main 

source of data (12). Using systems biology method 

such as a comparison between gene sets of diseases, 

constructing PPI network and pathway enrichment can 

be helpful to decipher the shared mechanism of 

NAFLD and AD. In this study, we reported seven 

important shared proteins between these diseases that 

can be used not only as markers of disease but also as 

targets for drug designing. Also, pathways that shred 

between these diseases were introduces.   

 

Methods 

DisGeNET is a discovery database  that gathered 

genes and variants associated with human diseases and  

publicly available (13). The related genes of NAFLD 

and AD were exported from DisGeNET database and 

common genes between two diseases used to construct 

PPI network by Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING). STRING is a 

database for predicted protein-protein interactions at 

EMBL clusters the extracted results from many protein-

protein interactions databases, like Mint, BioGrid, etc. 

It also uses the information from KEGG pathways and 

Reactome to provide the best annotations for the 

interactions of one protein (14). The common network 

was constructed by importing shared genes in STRING 

database and clustered by ClusterONE plugin of 

Cytoscape software (15) that finds overlapping protein 

complexes in a protein interaction network loaded into 

Cytoscape. (overlap threshold = 1, node penalty = 0, 

haircut threshold = 0) (16). Pathway enrichment and the 

relation between pathways were accomplished using 

ClueGO and CluePedia plugins of Cytoscape software 

(17, 18). To find the best centrality method for 

selection of the most important nodes, we use an R 

package named CINNA (19, 20). A network is 

composed of nodes (e.g., genes or proteins) and 

edges/links (e.g., co-expression relationships or 

physical interactions). In network biology terms, 

degree, and Betweenness are important centrality 

parameters that are useful for analysis network 

topology. Edges/links of a node are called the degree of 

that node. Nodes with high degree are called hubs and 

nodes that achieve top-ten, or top-five percent of 

betweenness centrality are called bottlenecks (both 

based on researcher’s definition) (21). So, nodes that 

are simultaneously hubs and bottlenecks are named 

hub-bottlenecks (22). Average degree (A.D) and 

standard deviation (SD) of degrees were calculated, and 

nodes with a degree above 2SD + A.D were selected as 

hub proteins in each network. Also, the top five percent 

of betweenness centrality measures were selected as 

bottleneck proteins. Shared genes, hubs and bottleneck 

proteins of these two networks were extracted and used 

for further analysis. We used Cytoscape to analyze 

networks and extract hubs, hub-bottlenecks, and their 

first neighbors (23).  

 

Results 

From DisGeNET, 332 and 1200 genes were 

extracted for NAFLD and Alzheimer`s diseases, 

respectively. Totally, 189 genes were shared between 

the two lists were shared and were named common 

genes. The common genes network that was 

constructed using STRING database has 182 nodes and 

2591 edges and four clusters (Figure 1). Cluster 

analyzing by ClueGO and CluePedia plugins showed 

that there are 29 meaningful pathways based on 

statistical analysis and there is no duplication between 

them. Cluster one mainly includes carbohydrate 

metabolism pathways and their related signaling, and 
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the main category of this cluster was AMPK signaling 

pathway. In cluster two long chain fatty acid and their 

extract metabolic process include arachidonic acid, 

xenobiotics and calciferol were enriched. Finally, 

enrichment of cluster three lead to signaling pathways 

such as regulation of JAK-STAT cascade, IL-17 

signaling pathway and AGE-RAGE signaling pathway 

in diabetic complications. Due to low number of nodes 

in cluster four, pathway enrichment was meaningless 

(table 1).  

Based on CINNA package results, degree and 

Betweenness centrality methods were the best qualified 

methods for this network. In next step, the network was 

analyzed by Cytoscape to define hubs, hub-bottleneck. 

Results showed that IL6, AKT1, TP53, TNF, JUN, 

VEGFA, PPARG, MAPK3, IGF1, and LEP are hubs 

that first seven proteins were also bottlenecks, so 

 
Figure 1.  Resulted network which is constructed by common genes between NAFLD and AD diseases is presented. This 

network includes four clusters that are highlighted by different colors. Cluster-1: orange, cluster-2: red, cluster-3: green, and 

cluster-4: gray.  
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selected as hub-bottlenecks (table 2). By extracting 

these hub-bottlenecks and their first neighbors from the 

network, we reach to a new interesting network that 

contains 82% of nodes (150 nodes) and 92% of edges 

(2367 edges) from the main network. So by analyzing 

them in OMIM as the main database for disease, we 

reached to diabetes and obesity (table 3). 

 

Discussion 

Systems biology methods such as PPI network analysis 

and pathway enrichment have been used broadly to 

discover main proteins and pathways underlying 

complex diseases (24). Different types of cancers, 

various kinds of neurodegenerative diseases and 

disorders and also many cellular conditions are 

analyzed via protein-protein interaction method (25-30) 

The relation between NAFLD and AD is becoming 

increasingly recognized (9-11). In this study, we used 

the complete genes list of the two diseases (NAFLD 

and AD) that may have shared mechanism based on 

risk factors and previous studies (8). According to 

network clustering and further pathways enrichment, 42 

pathways were enriched. Altogether, three main group 

of pathways are candidate as key pathways in both AD 

and NAFLD: carbohydrate metabolism, long fatty acid 

metabolism, and IL signaling pathways. Previous 

studies indicate evidence about all mentioned relation 

Table 1. List of enriched  pathways based on network clustering related to the common genes between NAFLD and AD is 

presented. Cluster four does not have has pathways, due to less number of genes. 

GO Term Ontology Source Adjusted-P Value Cluster name 

regulation of glucose import GO Biological Process 1.1E-11 1 

glucose import GO Biological Process 4.5E-14 

AMPK signaling pathway KEGG 1.3E-25 

Longevity regulating pathway KEGG 5.1E-11 

Adipocytokine signaling pathway KEGG 1.7E-20 

fatty acid oxidation GO Biological Process 1.4E-14 

PPAR signaling pathway KEGG 3.1E-13 

Adipocytokine signaling pathway KEGG 1.7E-20 

Insulin resistance KEGG 5.8E-23 

regulation of fatty acid metabolic process GO Biological Process 4.2E-20 

positive regulation of fatty acid metabolic process GO Biological Process 1.3E-14 

fatty acid beta-oxidation GO Biological Process 1.4E-11 

long-chain fatty acid metabolic process GO Biological Process 1.2E-16 2 

 arachidonic acid metabolic process GO Biological Process 4.3E-16 

Metabolism of xenobiotics by cytochrome P450 KEGG 5.1E-23 

Drug metabolism KEGG 3.3E-23 

Chemical carcinogenesis KEGG 6.9E-20 

Oxidation by Cytochrome P450 WikiPathways 6.9E-16 

Vitamin D (calciferol) metabolism REACTOME 7.5E-16 

Cytochrome P450 - arranged by substrate type REACTOME 7.5E-16 

Vitamins REACTOME 7.5E-16 

Oncostatin M Signaling Pathway WikiPathways 1.4E-28 3 

Lung fibrosis WikiPathways 1.5E-24 

AGE-RAGE signaling pathway in diabetic complications KEGG 6.2E-28 

Interleukin-10 signaling REACTOME 6E-48 

Interleukin-4 and 13 signaling REACTOME 6E-48 

positive regulation of JAK-STAT cascade GO Biological Process 4.3E-23 

tyrosine phosphorylation of STAT protein GO Biological Process 2E-21 

regulation of tyrosine phosphorylation of STAT protein GO Biological Process 1.5E-21 

IL-17 signaling pathway KEGG 2.1E-26 

Salmonella infection KEGG 7.8E-27 

Pertussis KEGG 1.4E-25 

Leishmaniasis KEGG 6.5E-28 

Chagas disease (American trypanosomiasis) KEGG 7.4E-30 

Inflammatory bowel disease (IBD) KEGG 1.7E-26 

Rheumatoid arthritis KEGG 1.3E-28 

Allograft Rejection WikiPathways 1.2E-21 

lipopolysaccharide-mediated signaling pathway GO Biological Process 4.6E-27 
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except the role of long fatty acid metabolism in AD (8, 

31-37).  

Six Hub- Bottleneck nodes are important targets for 

both NAFLD and AD. High level secretion of 

peripheral IL-6 may be responsible for acute-phase 

proteins that observed in AD patients (38) and high 

levels of IL-6 were detected in NAFLD patients (39). 

AKT activity in temporal cortex of Alzheimer patients 

were significantly increased (40) and activated the PI3-

K/Akt kinase pathway triggers NAFLD (41). TP53 that 

known as P53, up-regulated in Alzheimer's disease (42) 

and inhibition of attenuates signs of NAFLD (43). 

Inhibition of TNF alpha decrease amyloid plaques and 

tau phosphorylation in the mouse brain, and so risk of 

AD (44), and this protein involved in the 

pathophysiology of NAFLD (45). Inhibition of JUN is 

a therapeutic strategy to stop progression of AD (46) 

and expression of this protein Increased in NAFLD 

(47). Abnormal regulation of VEGFA expression 

implicated in AD (48) and involved in pathophysiology 

of NAFLD (49). Finally, PPARG is a potential 

therapeutic targets for both AD and NAFLD (50, 51).  

Analyzing main nodes and their first neighbors by 

OMIM database showed that diabetes and obesity were 

the results of this enrichment. We can conclude that 

diabetes and obesity are common ancestors of AD and 

NAFLD.  

These results showed that application of systems 

biology methods unhide unravels the secret behind 

common mechanism of AD and NAFLD. The real 

impact of common proteins on treatment of NAFLD 

and AD also needs to be further assessed. 
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