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ABSTRACT 
Aim: This study investigates the effect of fat diet on gene expression profile in rat liver via protein-protein interaction mapping 
analysis. 
Background: Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition of liver in the world. This progressive metabolic disease 
is representative with fat accumulation in the patients’ liver that can led to advance stages, namely, cirrhosis and eventually cancer.  
Methods: Differentially expressed genes of NAFLD rat liver after 2, 4 and 6 weeks fat diet feeding were analyzed via GEO2R and 
protein-protein interaction network by Cytoscape v3.6.0. and the related plug-ins. The important genes were assigned based on degree 
and betweenness centrality analysis and enriched using ClueGO+CluePedia Plug-in.  
Results: GAPDH, PRDM10, TP53, AKT1, INS, ALB, SRC, MAPK1, ACLY, ACACA, DECR1, ACACB, MBOAT4, TNF, 
EHHADH and JUN genes were introduced as key genes related to the fat diet fed NAFLD rats. Fatty acid biosynthesis and four other 
terms were introduced as the main related ones to the essential genes.  
Conclusion: The introduced critical genes and the related terms may describe NAFLD molecular condition and its progression to the 
other severe metabolic diseases. Moreover, these potential biomarkers may be monitored for diagnosis and treatment approaches after 
validation investigations.   
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Introduction  
  1 About one-third of the world population are affected 
by Nonalcoholic fatty liver disease (NAFLD) (1). The 
disorder manifests by excessive accumulation of fat in 
the liver tissue (2). Many metabolic disease are also 
correlated with NAFLD knowing as obesity, hyper 
insulinaemia, type 2 diabetes, insulin resistance, hyper 
triglyceridaemia and hypertension (1). On the other 
hand, this metabolic syndrome has a different stages 
that can trigger from simple liver condition to the 
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severe diseases, in which, initiates from  steatosis to 
non-alcoholic steatohepatitis, hepatocellular injury, 
fibrosis, and frequently lead to cirrhosis (3). What is 
more, it has also been known as a precursor of the 
ultimate stage of the liver which is hepatocellular 
cancer (4). In this light, monitoring this disease based 
on molecular concept can provide more information 
about disease nature and molecular changes during its 
differentiations. Gene expression profile plus PPI 
network analysis is one of the novel ways to reach this 
goal, which has been in a great attention recently (5-8). 
In  a PPI approach, genes that are associated to a 
condition such as disease are interacted in a scale free 
network and the topological parameters of  the 
constructed network analyzed for screening the studied 
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genes (8). Topological criteria such as degree, 
betweenness centrality, closeness centrality and stress 
are used frequently for analysis of network of various 
diseases. Degree refers to the number of connections 
between one node and the other nodes of a network. 
The introduced crucial nodes in the format of a related 
panel can be used in biomarker discovery (9). 
Biomarkers are the biomolecules including proteins, 
metabolites, genes and the other reagents, which are 
specific and sensitive for a disease. Biomarker 
discovery is attracted more attention in the field of 
medicine (10, 11). Biomarkers are precise diagnostic 
tools and can be applied in follow up of patients (12). 
There are several documents about liver and its 
diseases via system biology particularly PPI network 
analysis, which provided new prospective to disease 
(13-16). The other important concept is gene ontology 
that analysis related biological processes, molecular 
functions, cellular components, and chemical pathways 
to the certain genes (17, 18). The aim of this research is 
to determine effect of fat diet feeding on protein 
interactome of NAFLD rat via studying gene 
expression profile of different stages that consequently 
may be useful in human molecular investigations.  

 

Methods 
Protein-protein interaction network analysis of 

significantly changed genes in expression is conducted in 
this study. The data is from the Gene Expression 
Omnibus (GEO)(19) in which the Platform (GPL1355) 
Series GSE73500, using Rat Genome 230 2.0 microarray 
(Rattus norvegicus), last update on Jul 31, 2017 is 
studied. This data is published as an article”Correlation 
Analysis Between Gene Expression Profile of Rat Liver 
Tissues and High-Fat Emulsion-Induced Nonalcoholic 
Fatty Liver” conducted by C Xu, et al. in 2011(20).  The 
dataset consists of liver tissue samples of 12 rats of 12 
weeks old from 4 stages, namely different time courses 
including normal liver tissue (0h) and after feeding with 
fatty food in 3 stages designed as 2 weeks, 4 weeks, and 
6 weeks. As it is clear, each stage consists of 3 samples 
with accession IDs.  

GEO2R, online GEO engine normalized the data and 
identified significantly altered genes in expression 
through assigning significance of (p≤ 0.05) along with 
the log transformation of fold change as well as 

considering the correction test of Benjamini & Hochberg 
(False discovery rate). Thousands of genes with other 
relevant information are detectable via GEO2R, 
however, here only the genes among the top 250 ranked 
significant ones (p≤ 0.05) with the fold change cutoff of 
≥ 2 were chosen for further analysis. Accordingly, the R 
script provided by GEO2R was applied in the R Studio 
Software environment for conducting this evaluation as 
well, using GEO query and limma R packages from the 
Bioconductor project (21). Among these genes, those 
with gene name were searched against Cytoscape 
platform as the elements of interactions. Cytoscape in 
conjugation with String db (22, 23), constructed three 
different networks from comparison of different stages 
of normal/2w, normal/ 4w, and normal/6w versus control 
group.  These networks were compared in terms of 
centrality features that were provided by the application 
of NetworkAnalyzer (24), as the well-integrated 
algorithm for computing topological parameters in 
Cytoscape. The well-known centrality attributes: degree 
and betweenness centrality were considered in this study 
to examine the potential effective agents that their 
removal causes perturbation of network structure (24). If 
degree value of a node was above Mean +2SD, the node 
was selected as hub-gene. The top 5% of the nodes based 
on betweenness value were introduced as bottleneck-
genes (25, 26). The hub-nodes which were bottleneck 
determined as key genes (hub-bottleneck genes) (27).  
As the central nodes were assigned for our networks, the 
enrichment analysis was followed this step for the related 
biological processes applying ClueGO+CluePedia 
analysis (28). The CluePedia, in association of ClueGO, 
suggests more information to the related analysis by 
assigning some extended data (29).  

 

Results 
For logical comparison of the defined groups, 

expression values were investigated via box-plot 
analysis. The findings (see figure 1) show that the values 
are median-centered and consequently, the groups are 
comparable in terms of expression and further 
investigations is possible. Since organized genes in the 
integrated network can provide useful information about 
the roles of the involved genes in the disease, the related 
PPI networks for the three groups were constructed and 
analyzed.  
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The scale free networks (data are not shown) were used 
as suitable tools for gene screening.  The key genes 
based on degree values and amounts of betweenness 
centralities determined for each networks and results are 
tabulated in the tables 1-3. The introduced nodes in these 
tables are highlighted as hub-bottleneck genes. For better 
comparison between the studied groups, content of tables 
1-3 was summarized in table 4. In this table, the central 
genes can be compared based on feeding time courses.  
Overall combination of the key genes related to the three 

studied groups including GAPDH, PRDM10, TP53, 
AKT1, INS, ALB, SRC, MAPK1, ACLY, ACACA, 
DECR1, ACACB, MBOAT4, TNF, EHHADH and JUN 
genes were determined. This combination was obtained 
from content of table 4 by selection the genes with one-
time repetition. Since the roles of the central genes in 
disease are crucial factors for clear interpretation of 
finding, Gene ontology enrichment for the 16 mentioned 
key genes was done by ClueGO software and the finding 
were presented in the figures 2,3.  

 
Figure 1. Comparison of expression amounts of the defined groups: three controls (blue color) and after 2 weeks feeding (pink 
color), after 4 weeks feeding (orange color), and after 6 weeks feeding (green color) are represented. The box-plot analysis was 
obtained using R statistical software. The x-axis and y-axis indicate the range of expression values and biological replications for 
groups, respectively. The comparison shows that the values are median-centered and consequently, the groups are comparable in 
terms of expression and further investigations are possible.  
 
Table 1. The central nodes (hub-bottleneck genes) related to PPI network of the two weeks feeding rats model of NAFLD with 
high fat diet in comparison with control group are presented.  
Row Display name Description Degree BC 
1 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 125 0.03 
2 PRDM10 PR domain containing 10 121 0.03 
3 TP53 tumor protein p53 114 0.06 
4 AKT1 v-akt murine thymoma viral oncogene homolog 1 113 0.02 
5 INS Insulin 106 0.03 
6 ALB Albumin 105 0.02 
7 SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 104 0.03 
8 MAPK1 Mitogen-activated protein kinase 1 102 0.02 
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The statistical analysis for gene ontology are as 
follow: Kappa statistic is used for analysis how much 
the biological terms are grouped together as clusters. 
Kappa Score: 0.4, Min level of ontology: 3 Max level 
of ontology: 8, Number of min gene per term: 3 and 3, 

Percentage of min gene per term: 5, the correction 
method: Bonferroni step down, Enrichment/depletion 
test for the terms: 2-sided enrichment/depletion based 
on hypergeometric method. 
 

Table 2. The key nodes (hub-bottleneck genes) of PPI network of the four weeks feeding rats’ model of NAFLD with high fat 
diet in comparison with control group are shown.  
Display name Description Degree BC 
PRDM10 PR domain containing 10 86 0.08 
ACLY ATP citrate lyase 83 0.04 
INS Insulin 80 0.06 
ACACA Acetyl-CoA carboxylase alpha 79 0.03 
DECR1 2,4-dienoyl CoA reductase 1, mitochondrial 79 0.03 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 78 0.03 
ACACB Acetyl-CoA carboxylase beta 75 0.03 
ALB Albumin 75 0.03 
EHHADH Enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 66 0.02 
 
Table 3. The crucial nodes (hub-bottleneck genes) related to PPI network of the six weeks feeding rats model of NAFLD with 
high fat diet in comparison with control group are presented.  
Display Name Description Degree BC 
PRDM10 PR domain containing 10 104 0.04 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 101 0.03 
ALB Albumin 99 0.03 
INS Insulin 98 0.03 
TP53 Tumor protein p53 95 0.05 
DECR1 2,4-dienoyl CoA reductase 1, mitochondrial 92 0.04 
MBOAT4 Membrane bound O-acyltransferase domain containing 4 91 0.02 
TNF Tumor necrosis factor 88 0.03 
JUN Jun proto-oncogene 87 0.02 
 
Table 4. The central nodes (hub-bottleneck genes) related to PPI network of the feeding rats model of NAFLD with high fat diet 
in comparison with control group are presented. 2W, 4W and 6W are corresponded to two, four and six weeks feeding time 
courses respectively. 
2W 4W 6W 
GAPDH PRDM10 PRDM10 
PRDM10 ACLY GAPDH 
TP53 INS ALB 
AKT1 ACACA INS 
INS DECR1 TP53 
ALB GAPDH DECR1 
SRC ACACB MBOAT4 
MAPK1 ALB TNF 
- EHHADH JUN 
 

 
Figure 2. Gene ontology enrichment of relate 16 key genes to the PPI network of NAFLD rat after fat diet feeding. At least 
presence of three genes and 5% attribution for each term was considered. P-valve was less than 0.01. 
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Discussion 
Fatty liver disease is the most prevalent type of liver 
disorder worldly that can lead to other kinds of serious 
disorders such as cirrhosis, diabetes, heart attack and 
stroke (30). Molecular study can be helpful for better 
recognition of the disease root and associated 
mechanisms that promote the condition (26). In the 
present study, the key genes related to the feeding style 
including fat diet of rat model of NAFLD are 
investigated via PPI network analysis.  As depicted in the 
tables 1 and 4, a key gene profile including eight central 
genes (GAPDH, PRDM10, TP53, AKT1, INS, ALB, 
SRC and MAPK1) is highlighted in the PPI network of 
the rat model of NAFLD after two weeks feeding with 
high fat diet. As it is shown in tables 2, 3 and 4, the key 
genes profile as a dependent variable of time feeding is 
changed after four and six weeks of feeding. As it is 
shown in the table 4, there are five common genes 
between the three studied groups. Due to the fact that 

TP53 is close to the cut off assigned in 4 w group, it is 
possible to consider it as a common gene.  
In the first step, combination of all of the key genes can 
be introduced as a panel including GAPDH, PRDM10, 
TP53, AKT1, INS, ALB, SRC, MAPK1, ACLY, 
ACACA, DECR1, ACACB, MBOAT4, TNF, 
EHHADH and JUN genes. This panel independent of 
feeding time is corresponded to the effect of fat diet on 
the NAFLD gene expression profile especially the key 
genes. Since there are five common genes for each 
group, it can be concluded that about 50-60% of the 
introduced genes for individual groups are common 
genes. In the second glance, it is clear that AKT1, SRC 
and MAPK1 are the specific crucial genes that refer to 
the early effect of fat feeding. Finally, MBOAT4, TNF 
and JUN are appeared in the last time course feeding. 
Moreover, the roles of the 16 key genes in NAFLD rats 
after feeding fat diet were investigated via gene ontology 
analysis. For achieving important pathways, the 

 
Figure 3. Gene ontology enrichment of relate 16 key genes to the PPI network of NAFLD rat after fat diet feeding is presented.  
The pathway and related genes are shown. At least presence of three genes and 5% attribution for each term was considered. P-
valve was less than 0.01. 
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restricted investigation was applied to GO enrichment. 
The findings are shown in the figures 1 and 2. Nine 
genes among 16 genes were included in the analysis. 
Absence of MBOAT4, TNF and JUN, the special key 
genes of 6 w group and presence of ACACA, ACACB 
and ACLY, the distinctive key genes of 4 w group 
among 16 key genes indicates that the early time courses 
of feeding have considerable effect on the introduced 
profile. Membrane-bound O-acyltransferase 4 
(MBOAT4) is a hydrophobic enzyme that esterifies 
long-chain fatty acids to the target proteins (31). This 
enzyme is involved in reduction of hepatic autophagy 
(32).  It is reported that anti-TNF antibodies inhibit 
inflammation and improve NAFLD. TNF evokes hepatic 
inflammatory response in liver in the NAFLD patients 
(33). Investigation shows TNF induces c-JUN in liver 
regeneration response (34). Based on these finding, it can 
be concluded that MBOAT4, TNF and JUN are related 
to the advanced stage of fatty diet feeding course in the 
NAFLD rats. Fatty acid biosynthesis is the main 
biochemical pathway which is involved with four key 
genes (see figures 1, 2). This is one of the well-known 
and primary pathways in metabolism (35). Since fat diet 
feeding is accompanied by intake of extra amounts of 
fatty acids; it is predictable that this pathway be induced. 
Leptin signaling pathway is the other pathway which is 
correlated with four genes. Release of leptin from 
adipocytes plays an important role in body weight 
regulation. Several signal transduction proteins such as 
STAT3, SOCS3, PTP, IRS, AMPK and SH2B; are 
mediated in this pathway which right function of them is 
required (36). Therefore, alteration of body weight after 
fat diet feeding is not avoidable. About 70% of cases 
with type 2 diabetes mellitus are also dealing with 
NAFLD (37). The third pathway is concerned with three 
genes and describes this relationship. Role of  aryl 
hydrocarbon receptor in toxicity and cancer is discussed 
in several documents (38). Negative correlation between 
vitamin B12 and NAFLD is reported (39). MAPK1 and 
TNF are the two genes which each of them were 
connected to the three terms. Relationship between 
MAPK1 and various cancer types is confirmed (40, 41). 
Role of TNF in cancer has attracted attention of 
researchers and there are several documents about its 
significant role (42, 43). Acetyl-coA carboxylase as a 
main genes in correlation with fatty acid biosynthesis has 
an essential role in fatty acid metabolism in the animal 

tissue and is a criterion for investigation on the 
epigenetic effects on fatty acid metabolism (44). 
Albumin as a housekeeping gene plays an important role 
in body hemostasis. Drug transfer, carrier of metabolites, 
hormones and several types of biomolecules in body are 
the well-known definition of albumin (45). This broad 
spectrum of functional roles of albumin in body implies 
strong expression change of albumin in correlation with 
most of diseases. Expression change of DECR1; the 
auxiliary enzyme in β-oxidation of fatty acids is reported 
in several cancers (46). Relationship between this 
enzyme and fatty acid metabolism is led to introduce 
DECR1 as a meat quality marker (47). Since 
inflammatory response in liver of NAFLD patients can 
progress to cirrhosis or even liver cancer and disease is 
strongly associated with two health problem including 
obesity and insulin resistance (48), The findings of this 
research are corresponded to the literature and represent 
the new insight of NAFLD. The findings are focused on 
metabolism of fatty acids and risk of the other diseases 
especially liver cancer. It is PPI network analysis power 
that highlights a few crucial genes among numerous of 
reported genes in correlation with a certain disease.   
Among query genes and their related ones, 16 genes 
were introduced as key elements in relationship with five 
essential pathways which are involved in the NAFLD rat 
in fat diet feeding course. Most of the enriched genes 
refer to four weeks fat diet feeding group which 
represent time course of feeding. It seems that the 
introduced genes and pathways play significant roles in 
pathology of NAFLD and its progress to the other 
diseases in particular cancer. 
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