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ABSTRACT 
Aim: The main goal of this analysis was prioritization of co-expressed genes and miRNAs that are thought to have important 
influences in the pathogenesis of colon and lung cancers. 
Background: MicroRNAs (miRNAs) as small and endogenous noncoding RNAs which regulate gene expression by repressing 
mRNA translation or decreasing stability of mRNAs; they have proven pivotal roles in different types of cancers. Accumulating 
evidence indicates the role of miRNAs in a wide range of biological processes from oncogenesis and tumor suppressors to 
contribution to tumor progression. Colon and lung cancers are frequently encountered challenging types of cancers; therefore, 
exploring trade-off among underlying biological units such as miRNA with mRNAs will probably lead to identification of promising 
biomarkers involved in these malignancies.  
Methods: Colon cancer and lung cancer expression data were downloaded from Firehose and TCGA databases and varied genes 
extracted by DCGL software were subjected to build two gene regulatory networks by parmigene R package. Afterwards, a network-
driven integrative analysis was performed to explore prognosticates genes, miRNAs and underlying pathways.  
Results: A total of 192 differentially expressed miRNAs and their target genes within gene regulatory networks were derived by 
ARACNE algorithm. BTF3, TP53, MYC, CALR, NEM2, miR-29b-3p and miR-145 were identified as bottleneck nodes and enriched 
via biological gene ontology (GO) terms and pathways chiefly in biosynthesis and signaling pathways by further screening.  
Conclusion: Our study uncovered correlated alterations in gene expression that may relate with colon and lung cancers and 
highlighted the potent common biomarker candidates for the two diseases. 
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Introduction  
  1 The complex molecular interactions underlying 
cancers warrant identification of biological entities like 
miRNAs as well as the crosstalk between different 
cancers. Colon cancer is a fatal malignancy with 
estimated 1.4 million cases yearly (1). Despite much 
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research to elucidate the molecular processes that 
promote the normal colon cells toward tumors, the rate 
and average years of survival have not changed 
considerably over decades. Lung cancer is also a 
worldwide fatal cancer with high prevalence even at 
early stage (2) that can be grouped in two major forms; 
non-small cell lung cancer (NSCLC ≈85% of all lung 
cancers) and small-cell lung cancer (SCLC ≈15%). 
Furthermore, NSCLC can be divided into three major 
histological sub-types: squamous-cell carcinoma, 
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adenocarcinoma and large-cell lung cancer (3). As both 
colon and lung tissues derive from primordial gut, 
supposedly the same genes may be involved in 
regulatory networks underlying cellular pathways in the 
two organs. Therefore, tumorigenesis in both of these 
organs may also be partly similar by implicating the 
same sets of genes and regulatory units. Reportedly, the 
majority of genes involved in colon and lung cancers 
are likely identical or related (4). Moreover, 
experimental evidence showed the role of a number of 
genes including LRRC36 (5), SLC6A4 (6), COL3A1 
(7), TMEM125 (8), ITGAV (9), TXNDC17 (10) and 
PPP2R5A (11) in both colon and lung cancers that may 
imply a possible correlation between the two 
malignancies at transcriptome level (12). Nowadays, 
data mining approaches including networking 
constitute a prominent strategy for extracting 
meaningful information from a growing wealth of 
biological data such as gene expression profiles (13). 
Biological networks are mostly inferred by 
transcriptomics profiles including microarrays and next 
generation sequencing (NGS) platforms, and 
microarrays have been used intensively (14). Rapid 
advances in NGS techniques have deviated the massive 
employment of microarrays as the main expression 
platform to sequencing data (15). In addition to lower 
sensitivity because of unavoidable noise coming from 
the nature of microarrays, NGS techniques offers 
several advantages over microarrays (14, 16).  These 
techniques do not depend on genomic pre-knowledge 
for transcriptome analysis and can be utilized for 
model and non-model organisms (17). While 
microarrays can cover only the characterized parts of 
genome, NGS platforms are able to identify entire 
transcripts (18). Finally, detecting the novel 
transcripts and variant splicing are other capabilities 
of NGS profiling techniques (19, 20). In this study, it 
was hypothesized that there is a correlation between 
mRNAs and miRNAs in colon and lung cancers at 
transcriptional level. Therefore, network mining was 
conducted to identify putative miRNA-mRNA 
modules in these cancers.   

 

Methods 
Data acquisition and pre-processing   

In the present article, colon cancer gene expression 
dataset generated by Illuminaga_RNASeqV2 
containing 192 normal and cancer samples and 20532 
genes was chosen from Firehose 
(https://confluence.broadinstitute.org/display/GDAC/H
ome). For the miRNA expression profiling data, lung 
cancer Illumina HiSeq included 231 normal and cancer 
samples and 1045 genes were retrieved from TCGA 
(https://www.synapse.org/#!Synapse:syn300013/wiki/2
7406). The expression values of miRNAs and mRNAs 
were subjected to expression Based filter and variance 
Based filter functions implemented in DCGL v2.0 R 
package (21) to filter out genes that are extremely 
expressed invariably between normal and cancer 
samples. The expression Based filter removes genes 
whose mean expression between experiments is lower 
than the median of this value for all genes and the 
variance Based filter removes genes that are expressed 
not significantly more variably than the median gene.  

In silico analysis and networking  
Predicted gene-miRNA interactions were collected 

from miRWalk 2.0 server (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk2/miRpub.html) based 
on miRBase database.  Regarding the mRNAs, only the 
miRNAs target genes were retrieved by miRWalk from 
colon cancer transcripts. Afterwards, two independent 
gene regulatory networks were built using unique 
miRNAs and their target genes using arcana function 
with eps=0.05 implemented in parmigene R package 
(22). Next, genes and miRNAs within the networks 
were separately ranked based on betweenness centrality 
as bottlenecks measure by CytoNCA Cytoscape plugin 
(23). Moreover, interacting transcription factors among 
the bottleneck mRNAs were extracted by TransmiR 
(http://www.cuilab.cn/transmir), a database of 
experiment-supported TF–miRNA regulatory 
interactions manually curated from publications. 
Finally, the identified gene-miRNA-TF modules were 
plotted using Cytoscape 3.4.0 (24).     

Gene Ontology analysis and visualization  
To find the significantly over-represented biological 

GO terms and functions of gene products within 
regulatory network mRNAs, functional classification 
was performed using BINGO Cytoscape plugin (25) 
running hypergeometric test and Benjamini & 
Hochberg with False Discover Rate (FDR) correction at 
a significance level of 0.01. Finally, the clusters were 
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visualized by Enrichment map Cytoscape plugin with 
Jaccard’s coefficient 0.001. mRNAs were further 
functionally classified by PANTHER database 
(http://pantherdb.org/) to underlying pathways (Figure 
4). 

In order to study the functional roles of miRNA and 
their targets in biological pathways, pathway analysis 
was performed using PANTHER 
(http://www.pantherdb.org/geneListAnalysis.do) and 
mirPath v.3 (http://snf-515788.vm.okeanos.grnet.gr/), 
respectively.  

 

Results 
Building miRNA-mRNA interaction networks 

The 192 most variable miRNAs and target 
transcripts extracted from lung and colon cancer data 
were subjected to build two independent interaction 
networks by ARACNE algorithm implemented in 
parmigene software (setting epsilon to 0.05). 
Information-theoretic approaches like ARACNE (20) 
have been successfully applied for inferring large 
networks (26). In these approaches, first a pair-wise 
mutual information (MI) matrix is calculated between 
all possible pairs of genes. Afterwards, this matrix is 
manipulated to identify regulatory interactions between 
nodes (15). For more convenience in visualizing the 
networks in Cytoscape, we only selected the first 1000 
highly ranked edges. By utilizing the Network 
Analyzer (27), nodes within networks with higher 
connections were set to darker color and bigger size 
(Figure 1).  

As shown in Figure 1, miR-1283-2, miR-129-1, let-
7 and miR-424 showed the highest connections within 
miRNA interaction network. Regarding colon cancer 
network, genes including NME2, ATP1A1, CD24 and 
IFI6 showed the most connectivity.  

Exploring miRNA–TF–mRNA network  
The 192 miRNA variable transcripts of lung cancer 

data targeted 13711 validated genes based on miRWalk 
server. We then intersected between these 13711 
targets and the most variable mRNAs in colon cancer 
data extracted from DCGL R package. As the 
parmigene method demands orthogonal matrices for 
inferring co-expression network, we then processed 
further with two matrices of miRNAs and mRNAs both 
including 192 samples and genes. Degree distribution 

and following motif discovery (28) and recently 
betweenness centrality (29) are some of topological 
features that can address vulnerable points within 
biological networks. Next, for exploring putative 
miRNA-TF-mRNA networks underlying colon and 
lung cancers, we focused on the genes and miRNAs 
with the highest betweenness centrality within  

 
Figure 1. Lung (upper) and colon (lower) interaction 
networks inferred by ARACNE algorithm. Using 
NetworkAnalyzer Cytoscape plugin we mapped degree and 
betweeness parameters to node size and color intensity 
respectively so that bigger and darker nodes show higher 
degree and betweeness centralities. 

 
networks. To do so, we analyzed the upstream of 192 
target genes with iRegulon Cytoscape plugin (30). By 
intersecting iRegulon results and 10% of 192 targets 
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with the highest betweenness centrality, we identified a 
list of TFs among the targets. As shown in Figure 2, we 
identified BTF3, TP53 and MYC TFs as interacting 

TFs with miR-455-3p, miR-144 and miR-195 among 
10% of lung cancer miRNAs with the highest 
betweenness.  

 
Figure 2.  miRNA–TF–gene interaction network. Green circles donate miRNAs, yellows denote target genes of miRNAs, and 
blues denote TFs targets of miRNAs in colon and lung cancers. 

 

 
Figure 3. Functional classification of biological processes in which differential expressed genes from colon cancer supposed to 
be involved. The GO terms considered significant based on hypergeometric test with Benjamini & Hochberg FDR correction and 
significance level 0.01 by BINGO app. The results was illustrated using Enrichment map Cytoscape plugin. The bigger red 
circles and ticker green lines show GO terms that contain more genes with higher significance level. 
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The crossroads among the screened miRNAs, genes 
and TFs was illustrated in Figure 2 as modules, 

detonating each unit with more connection in bigger 
size.   

 
Figure 4. Bar chart of biological pathways in which variable transcripts extracted from colon cancer data potentially involved by 
PANTHER server with default parameters. The length of y axis showes the number of genrs assigned to each pathway. 

 

Figure 5. Heatmap of KEGG pathways in which bottleneck miRNAs after FDR correction were enriched. miRNAs were 
uploaded in mirPath v.3 server at p-value  < 0.01.  
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GO and pathway functional enrichment analysis 
As shown in Figures 3 and 4, 192 colon cancer 

related genes as validated targets of lung cancer 
miRNAs, were enriched in biological GO terms and 
pathways including glycolysis, purine and arginine 
biosynthesis, extra-cellular matrix organization, 
sequestering of metal ion and apoptosis as well as 
signaling pathways like endothelin and G-protein 
among which the representation of several of 
biosynthetic processes were more noteworthy. 
Furthermore, mirPath v.3 at p-value 0.01 threshold 
after FDR correction was applied to investigate the 
KEGG pathways in which bottleneck miRNAs are 
likely implicated. Heatmap denotes union of significant 
pathways. As shown in Figure 5, signaling pathways 
TGF-beta, Pl3K-Atk and pluripotency of stem cells as 
well as fatty acid metabolism have been reported to be 
involved in colon and lung cancers (31-34).   
 

Discussion 
By representing the molecular interactions underlying 
biological processes, network biology paves the path to 
drug discovery, better understanding of diseases 
mechanism and cancer therapeutics (35-37). miRNAs, 
mostly 19 to 25 nucleotide-long non-coding RNAs, 
biological units with low complexity, high stability and 
easy detection, regulate gene expression at the level of 
mRNA degradation and translation (38). Due to the fact 
that miRNAs play fundamental roles in development, 
differentiation and involvement of biological 
mechanisms underlying tumorigenesis, they could be 
promising biomarkers for several types of cancers. 
Cancer-related mortality rates in colon and lung 
malignancies is still the most common causes of cancer 
death worldwide; therefore, detecting biomarkers of 
initiation and progression of these cancers are 
challenging topics in cancer biology (1). In graph 
theory, in addition to hub nodes (proteins with high 
degrees), bottleneck nodes with higher betweenness 
centrality (a function of shortest paths that pass through 
a node) are more likely to be key connectors and 
likewise critical points controlling important dynamic 
components in biological networks (39). Removing 
them causes biological systems failure to save their 
coherence; therefore, these nodes were named 
bottleneck nodes (40, 41). In this article, open NGS 

data and bioinformatics tools were employed to explore 
the miRNAs and genes that are expressed in colon and 
lung tissues whose relationships hypothetically propel 
these tissues toward cancer. Two independent gene 
regulatory networks were constructed using the 
differentially expressed miRNAs and mRNAs from 
lung and colon cancers data with a novel mutual 
information estimation method named parmigene. The 
networks were then topologically analyzed to find the 
bottleneck miRNAs and genes. Bottleneck miRNAs 
and mRNAs were highlighted if they were in the top 
10% of degree distribution (genes that have the 10% 
highest number of neighbors) within the inferred 
miRNAs and genes interaction networks. The top 5% 
nodes are reported as bottleneck in previous studies; 
nevertheless, cutoff determination depends on the 
research profile and is arbitrary (42). It has been shown 
that selecting genes in range of 10-40% of degree 
distribution does not have a significant effect on the 
results (43). Of note, the colon cancer related genes 
were solely selected among the validated targets of 192 
miRNAs. Massive literature search showed that all 
bottleneck miRNAs and their targets are involved in 
colon and lung cancers. By the finest explanation, this 
could be biologically relevant with similarity of these 
tissues in cancer associated pathways. The identified 
miRNAs included miR-145 (44, 45), miR-197-3p (46), 
miR-16-5p (47), miR-455-3p (48), miR-195 (49, 50), 
miR-132-3p (51) and miR-29b-3p (52) among which 
miR-132-3p , miR-29b-3p , miR-16-5p  and  miR-455-
3p were enriched in more significant pathways like 
protein and lysine degradation, focal adhesion and 
cytochrome P450 (Figure 5), likely to be more involved 
in metabolism homeostasis and carcinogenesis (53). 
miR-16-5p is considered as a reference miRNA that 
was related with fatty and metabolism in this study. 
Moreover, target genes of miRNAs were enriched in 
pathways characterized to be associated with cancer, 
including enkephalin release involved in immune 
system (54), endothelin (55), a number of signaling 
pathways like G-protein (56, 57), apoptosis (58, 59) as 
well as ATP (60), purine (61), arginine biosynthetic 
processes (62, 63) and glycolysis (64). The relationship 
between G-protein signaling pathway and fatty acids 
has been demonstrated in colon cancer (65). Target 
genes of bottleneck miRNAs were also classified in 
pathways presumably related with colon cancer, like 
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biosynthetic processes, sequestering ion, extra-cellular 
matrix organization and erythrocyte homeostasis. 
Supposedly biosynthetic processes as the most common 
processes among miRNAs and mRNAs can be fairly 
explained thus; flux through glycolysis provides 
biosynthetic processes like purine, arginine, etc., and in 
the absence of these fuels, cancer cells will die due to 
apoptotic death. Concordantly, a line of evidence 
reported the fundamental roles of biosynthesis in cancer 
progression (66, 67). Additionally, among the 
bottleneck target genes, NME2, CARL, FLJ1308 and 
CD24 are more prominent. The expression of NME2 
was found to be reduced in different cancers including 
colon cancer (68). Calreticulin (CALR) was shown to 
contribute to breast cancer progression by 
dysregulation of TP53 transcription factor (69). In this 
study, CALR appeared to be regulated by miR-16-5p 
that is itself enriched in fatty acid biosynthesis. Finally, 
to recognize the potential master transcription factors 
among the target genes furthermore illustrating the 
modules of TFs-miRNAs-genes, we intersected 
between iRegulon analysis results, bottleneck targets 
and a list of interacting TFs with bottleneck miRNAs 
from TransmiR server. Notably, three transcription 
factors BTF3, Myc and TP53 were found to be 
associated with miR-455-3p, miR-195 and miR-145, 
respectively (Figure 2). BTF3 transcription factor was 
shown to be overexpressed in colorectal cancer (70); in 
addition, a number of studies have described the role of 
TP53 in colorectal cancer (71, 72). Among the target 
genes, FLJ1308 was detected to interact with both miR-
145 and TP53. Apoptotic loops of miR-145 and TP53 
in tumor prevention have been recently identified (73-
75). Tumor suppressor TP53 regulates a wide range of 
signals among which, in this analysis, the biosynthesis 
processes in response to nutrition depletion and 
representation of MYC oncogene in bottleneck target 
genes were more interesting. We observed that cancer-
related modules of miRNAs-target genes-TFs in both 
colon and lung cancers are common in several 
biological pathways, indicating similarity between 
these tissues regarding cancer progression.  
We aimed to explore biomarkers underlying both colon 
and lung cancers ;therefore, in the frame of network 
mining methods and topology feature analysis, a small 
number of putative genes, miRNAs and transcription 
factors were explored whose interplays are probably 

related to colon and lung cancers. An expected outcome 
of such a work would possibly identify crosstalk of 
miRNAs and genes in tumorigenesis in different tissues 
and more evidence for cancer diagnosis and treatment. 
In the present study, NGS data was chosen over 
microarray because: I) this technique provides more 
sensitive detection of transcripts, which is likely to be 
the reason for the ability of NGS data to detect low 
expressed genes while microarrays fail to differentiate 
between very low expressed and non-expressed genes 
(76); II) accurate measurement of the dynamic range of 
low and highly expressed genes (77); and III) giving a 
better resolution of relationship between biological 
units, especially for profiling of RNA molecules in 
which short reads should pass from adapter removal 
filter.  
However, this analysis is challenged by some 
limitations. Firstly, despite well-demonstrated roles of 
miRNAs in regulating multiples target genes involved 
in different oncogenic pathways in cancers, we should 
be cautious about the fact that each miRNA could 
potentially target hundreds of genes. Therefore, we 
need a deeper understanding of miRNA biology and 
undeniable role of experimental practices to improve 
fidelity of bioinformatics results. Next, evidently from 
ontology analysis, target genes could barely provide a 
clear biological finding; therefore, research works 
addressing validating miRNA sites within mRNAs will 
decrease the ambiguity in defining regulatory 
interactions among miRNAs-targets. Furthermore, we 
inferred information-theoretic based undirected 
networks while connectivity between nodes does not 
mean the causal relationships; we then should be 
cautious about dynamic nature of cancers via strict 
analysis of statics networks. Additionally, it is essential 
to remove overestimated regulation dependencies by 
employing more sophisticated gene regulatory 
inference algorithms. Finally, network analysis at 
transcriptome level could be more intensified through 
merging studies with protein networks to draw more 
practical conclusions. 
It is concluded that utilizing dual information of 
miRNAs and mRNAs in cancers trade-off can help to 
discover important findings to identify underlying 
mechanisms and enlighten more molecular 
underpinnings of different cancers. We observed that 
the identified miRNAs-mRNA covered a wide range of 
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known functions, mainly signaling pathways and 
biosynthesis implicated in colon and lung cancers. 
To summarize, conserved miRNAs and TFs like miR-
195, miR-145, BTF3, Myc and TP53 with their targets 
could be considered as hallmark genes for future 
diagnosis and therapeutic researches where their rules 
could be confirmed by experiments. 
Utilizing dual information of miRNAs and mRNAs in 
cancers trade-off can help to discover important 
findings to identify underlying mechanisms and 
enlighten more molecular underpinnings of different 
cancers. We observed that the identified miRNAs-
mRNA covered a wide range of known functions, 
mainly signaling pathways and biosynthesis implicated 
in colon and lung cancers. 
To summarize, conserved miRNAs and TFs like miR-
195, miR-145, BTF3, Myc and TP53 with their targets 
could be considered as hallmark genes for future 
diagnosis and therapeutic researches where their rules 
could be confirmed by experiments. 
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