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Abstract 
Objective: Despite the high strength of zirconia restorations, aging in the oral environment and 
masticatory loading may result in transformation of tetragonal to monoclinic phase and decrease 
their strength. Statements in this regard are controversial. This study sought to compare the flexural 
strength (FS) of Zirkonzahn (ZirkonZahn, Cercon, Ceramill) and Mamut (Dubai Medical Equipment 
LLC, Dubai, UAE) zirconia ceramics and assess the effect of thermal and mechanical aging on their 
FS. 
Methods: In this in vitro experimental study, 40 bar-shaped specimens measuring 20×5×2 mm were 
cut from Zirkonzahn and Mamut zirconia blocks and polished. Specimens in the aging groups were 
subjected to thermocycling (12,000 cycles, 5-55°C, dwell time of 20 seconds). Next, they were 
subjected to mechanical stress in a chewing simulator (40,000 cycles, 200N force). The three-point 
flexural strength (TPFS) was determined in megapascal (MPa) using a Universal Testing Machine at 
a crosshead speed of 0.5 mm/min. Data was analyzed using two-way ANOVA.  
Results: The mean and standard deviation (SD) of TPFS of Zirkonzahn and Mamut specimens in the 
no aging group was 809.57 (205.95) and 708.53 (158.72) MPa, respectively. These values were 
810.53 (158.96) and 839.06 (217.49) MPa for the Zirkonzahn and Mamut specimens subjected to 
aging, respectively. Type of zirconia (Zirkonzahn or Mamut) and exposure to aging process (p=0.27) 
had no significant effect on TPFS of specimens. 
Conclusion: Within the limitations of this study, the results showed that the process of aging did not 
decrease the TPFS of Zirkonzahn and Mamut specimens. Thus, these ceramics may be successfully 
used in the clinical setting. 
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Introduction: 
 
Zirconia-based ceramics are the most-recent 
generation of high-strength ceramics. Favorable 
mechanical properties, high esthetics, excellent 
biocompatibility, insignificant plaque 
accumulation and low thermal conductivity are 
among the advantages of zirconia ceramics. All 
these factors play a role in selection of these 

ceramics for esthetic tooth restorations (1).  
Mechanical properties of dental materials such 
as their strength are the main parameters taken 
into account when assessing the possible 
applications and clinical limitations of dental 
restorations. Despite the favorable mechanical 
properties of zirconia ceramics, the surface of 
zirconia specimens may undergo changes. 
Occasionally, in humid environments at 
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relatively low temperatures, the tetragonal phase 
of zirconia may transform into the monoclinic 
phase (2). This phenomenon, known as the low 
temperature degradation, is related to the partial 
stability of the tetragonal phase at room 
temperature and may lead to the formation of 
small and large cracks, decrease strength and 
impair mechanical properties of zirconia (3-5). 
This mechanism occurs very slowly in the oral 
environment but may decrease the strength and 
density of zirconia restorations (6, 7). Moreover, 
the strength may further decrease due to cyclic 
stresses attributed to the masticatory loading in 
the clinical setting (8, 9). Thermal stresses may 
also decrease the zirconia strength and create 
strain inside the ceramic materials (10, 11). 
Some studies have demonstrated that the process 
of aging of yttria-stabilized zirconia specimens 
at low temperatures causes the transformation of 
tetragonal to monoclinic phase and creates small 
cracks in the zirconia structure (12). The speed 
of phase transformation is related to factors such 
as temperature, size of grains, dopant 
concentration (13) and surface polishing of 
specimens (14). Rapid phase transformation 
leads to the destruction of ceramic specimens 
and decreases their strength. 
Dopants, available in the form of solid solutions, 
are added to zirconia ceramics in small amounts 
to change their chemical properties. Dopants like 
silica and alumina directly alter the morphology, 
substructure and stability of zirconia ceramics 
(15, 16). Ceria, also added to zirconia ceramics, 
plays a role in the process of sintering and 
improves resistance to aging (17, 18).  
Due to functional loading in the oral 
environment, zirconia-based restorations may 
develop fatigue in spite of high strength (19). 
Over time, these stresses accumulate and cause 
tiny defects (20) and small cracks (21) in the 
material. 
The process of aging may affect the strength of 
dental ceramics (22). Thus, it is necessary to 
assess the effect of aging on the strength of 

zirconia ceramics. Considering the existing 
concerns regarding the adverse effects of aging 
on mechanical properties and strength of 
zirconia ceramics, this study aimed to compare 
the FS of Zirkonzahn and Mamut zirconia 
specimens and evaluate the effect of thermal and 
mechanical aging on their FS.  

 
Methods: 
 
This was an in vitro, experimental study. 
Specimens were prepared in a laboratory and 
those with inaccurate dimensions were excluded 
and replaced with accurate ones. Specimens 
were evaluated in four groups of 10. Sample size 
was calculated to be 10 specimens in each group 
by a statistician according to similar previous 
studies (22, 23, 24). Specimens were randomly 
divided into four groups of Zirkonzahn and 
Mamut zirconia specimens with and without 
aging. 
Twenty specimens were fabricated of each type 
of zirconia according to the manufacturers’ 
instructions. Bar-shaped specimens, 4 (0.25) mm 
in width, 1.2± 0.2 mm in thickness and 20mm in 
length, were cut from ceramic blocks via the 
machining process using 30-40μabrasive 
diamond discs. Specimens were then polished 
with 15-20μ diamond discs and the opposing 
surfaces were paralleled. Next, all Zirkonzahn 
and Mamut specimens were rinsed with distilled 
water to remove any remaining debris. 
Zirkonzahn and Mamut zirconia specimens in 
the aging groups were thermocycled 
(Thermocycler, Dorsa, Iran) for 12,000 cycles. 
At each cycle, specimens were immersed in a 
distilled water bath at 5°C for 20 seconds, 
followed by 20 seconds of dwell time in the air 
and another 20 seconds in a distilled water bath 
at 55°C. After thermocycling, bar-shaped 
specimens were placed in CS-4 chewing 
simulator (SD Mechatronik, Feldkirchen-
Westerham, Germany) to receive 40,000 cycles 
at a load of 200N=20Kg in order to simulate 
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masticatoryloads in the clinical setting. 
Three-point flexural strength testing was 
performed according to ISO6872 standards. This 
test was performed under dry conditions at room 
temperature by Universal Testing Machine 
(Santam, Iran). Bar-shaped specimens were 
placed on the two jigs of the machine. The jigs 
had a semi-circle cross-section with 1.6mm 
diameter. The span length was 15mm. 
Compressive strength was applied by the upper 
blade (with a semi-circle cross-section 
and1.6mm diameter) from the top at a crosshead 
speed of 0.5 mm/min in between the two jigs 
(Figure 1) until fracture.  

 
Figure 1- Bar-shaped specimen placed on the two 
jigs. Load was applied from the top by the blade 

for TPFS testing 
 

To calculate mechanical parameters by the 
software of Universal Testing Machine, three 

different parameters are defined for each 
specimen: thickness of specimen, width of 
specimen and length of specimen. These 
parameters were accurately measured for each 
specimen using a digital micrometer (Mitutoyo 
Ltd., Andover, England) and entered in the 
software as the characteristics of the specimen. 
After TPFS testing, the load at failure for each 
specimen was calculated in MPa and the FS was 
calculated using the following equation: 
TPFS=3wl/2bd2 
Where w is the load at failure (N), l is the length 
of span (mm), b is the width of specimen and d 
is the thickness of specimen (mm) 
TPFS data of specimens in different groups were 
statistically analyzed using two-way ANOVA. 

 
Results: 
 
Based on the results, the mean and SD of TPFS 
of Zirkonzahn specimens was 809.57 (205.95) 
MPa in the no aging and 810.53 (158.96) MPa in 
the aging group. For Mamut specimens, these 
values were 708.53 (158.72) MPa and 839.06 
(217.49) MPa, respectively (Table 1). 
Type of zirconia ceramic (Zirkonzahn or 
Mamut) (p=0.54) and the aging process (p=0.27) 
had no significant effect on the FS of specimens. 
Moreover, the interaction effect of the type of 
zirconia and aging on flexural strength was not 
statistically significant (p=0.28). 

 
Table 1- The mean and SD of TPFS of Zirkonzahn and Mamut specimens with and without aging 

Group Aging Number mean SD Minimum Maximum 

Zirkonzahn 
Aging 10 810.53 158.96 482.94 1111.64 

No aging 10 809.57 205.95 592.23 1242.65 

Mamut 
Aging 10 839.06 217.49 572.74 1340.44 

No aging 10 708.53 158.72 461.98 964.49 

 

Discussion: 
 
In this study, Mamut and Zirkonzahn specimens 

were subjected to thermal and mechanical cycles 
to assess the effect of these processes on TPFS 
of ceramics. Based on the results, aging or type 
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of zirconia had no significant effect on FS of 
specimens. Moreover, the two types of zirconia 
were not significantly different in terms of FS. 
The obtained FS values for Zirkonzahn and 
Mamut zirconia were not similar to the values 
claimed by the manufacturers (1400 and 1100 
MPs, respectively). This difference may be 
explained by the general differences in 
preparation of specimens, sintering conditions 
and consequent differences in microstructures 
and sum of cracks (25).  
Our study showed that aging had no adverse 
effect on FS of zirconia specimens. This result 
has also been confirmed by several previous 
studies (26). In a study by Papanagiotou et al, in 
2006, the process of thermal aging at low 
temperatures had no negative effect on FS of Y-
TZP ceramics cut from In-Ceram YZ ceramic 
blocks (26). Ardlin (2002) demonstrated that FS 
of Y-TZP high-strength ceramics was not 
influenced by the process of thermal aging at 
low temperatures or chemical aging (immersion 
in 4% citric acid for 168 hours at 80°C)(27). In a 
study by Picconi, et al. (1998) zirconia 
specimens were stored in Ringer’s solution at 
37°C for different time periods and after one 
year no change occurred in the FS of specimens. 
In their study, hydrothermal procedures at 120°C 
for 120 hours in a humid environment had 
limited effects on the FS of Y-TZP ceramic 
specimens (28). 
Yilmaz et al. in 2011 evaluated the effect of 
aging on FS of Lava and Cercon zirconia 
ceramics (22). In their study, specimens were 
subjected to 20,000 cycles of 200N load with 
2Htz frequency and no significant difference 
was noted in the FS of aging and no aging 
groups. Vult Von Steyern et al. (1993) assessed 
the effect of 10,000 mechanical cycles and 5000 
thermal cycles on FS of specimens (23) and 
reported no significant difference in FS of 
specimens with and without aging.  
Pittayachawan et al. (2007) and Curtis et al. 
(2006) calculated the FS of Lava zirconia with 

and without mechanical cycles (10,000 and 
20,000 cycles at 250N, 2000 cycles at 500N, 
700N and 800N and 10,000 and 100,000 cycles 
at 80N load, respectively) and reported no 
significant effect on zirconia strength (21, 29). 
In a study by Brochers et al. (2010), the effects 
of different environments and loading conditions 
on the FS of In-Ceram YZ and Lava zirconia 
specimens were evaluated. Mechanical loading 
with 100N stress for 1 and 5 million cycles, 
thermocycling for 10,000 cycles and storage in 
distilled water at 36°C for 200 days, 80°C for 64 
days and 134°C for 8 hours were found to have 
no significant effect on zirconia strength (25).  
It appears than zirconia is resistant to aging 
during functional loading cycles for at least 75 
months with 800,000 masticatory cycles per year 
(11). In other words, this level of aging during 
this time period cannot cause zirconia 
destruction (29).  
In our study, similar to many previous ones, 
aging had no significant effect on FS. However, 
some others have reported reduction in FS of 
zirconia ceramics. If the phase transformation 
does not continue into the material mass, the FS 
would not decrease significantly. In other words, 
transformation of tetragonal to monoclinic phase 
starts at the material surface and propagates 
inward. This phase transformation at the surface 
is associated with increased volume but does not 
cause significant internal stress. Only after 
formation of a significant amount of monoclinic 
phase on the surface, stresses may accumulate 
and cause microcracks. When microcracks reach 
adequate length, they can cause fracture and 
decrease the strength of the ceramic (25). This 
case scenario did not occur in any of our 
understudy specimens.  
Kim et al. in 2009 investigated the effects of 
aging at low temperatures on mechanical 
properties and phase stability of Y-TZP ceramics 
and reported that these effects were influenced 
by the temperature at which the specimens were 
stored (30).  Chevalier et al. (1999) reported that 
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by increased temperature and duration of aging, 
the rate of phase transformation increased and 
this issue was related to the size of grains (8). 
Simultaneous with an increase in tetragonal 
grain, the stable phase gradually disappears. In 
the current study, the FS of zirconia groups 
increased following the process of aging. 
Theoretically, aging at 134°C for one hour 
corresponds to 3-4 years of clinical service (31, 
32). Itinoche et al. (2006) measured the FS of 
In-Ceram zirconia with and without mechanical 
cycles (20,000 cycles at 50N load) and 
demonstrated that mechanical cycles decreased 
the FS of specimens; however, this reduction 
was not statistically significant (24). 
Chevalier et al. (1999) indicated that as the 
result of aging at 130°Cfor 7 hours, for a 
monoclinic content higher than 30%, the rate of 
nucleation reached the saturation level (13). 
Thus, one possible explanation for increased FS 
may be the concentration of the monoclinic 
phase. The transformation of tetragonal to 
monoclinic phase starts at the surface of zirconia 
specimens. As long as the monoclinic phase is 
limited to a small area on the surface, changes in 
grain size and physical properties are 
insignificant (21). On the other hand, residual 
stresses are eliminated and the expansion created 
by the phase transformation prevents crack 
propagation (6).   This process may be related to 
the increased FS of specimens. On the other 
hand, when the saturation phenomenon occurs at 
the surface of zirconia in the monoclinic phase, 
the transformation phase occurs in the body of 
ceramic. In this situation, internal cracks may 
occur in the critical zone and cause inevitable 
reduction in FS (6). 
Vásquez et al. (2008) investigated the effects of 
mechanical and thermal cycling on FS of glass 
ceramics fused to titanium and reported that 
application of mechanical and thermal cycles 
decreased the FS of specimens in comparison 
with the control samples (31).  
Att et al. (2007) compared the FS of Vita YZ, 

Cerec In-Lab and Procera specimens with and 
without aging. Specimens in the aging group 
were subjected to 120,000 thermo-mechanical 
cycles (corresponding to 5 years of clinical 
service) with 49N force, which resulted in a 
reduction in strength of specimens particularly in 
the Procera group (32).  
The controversial results obtained by different 
studies may be due to the different aging 
processes or type of strength testing. Density of 
presintered zirconia blocks (due to correlation 
with critical crack size), the sinterability of the 
powder (due to correlation with the size of 
primary gains), mechanically created cracks, 
residual compressive stresses during the 
preparation of specimens and the yttria content 
(due to its significance in transition of tetragonal 
to monoclinic phase) also play a role in ceramic 
strength. 
Previous studies on the phase stability of 
zirconia ceramics mostly showed no reduction in 
strength as the result of aging. Tinschert in 2000 
and Tanaka in 2003 reported that zirconia 
ceramics fabricated in early 1980 were less 
stable than the currently used Y-TZP ceramics 
(33, 34). Moreover, it appears that standard Y-
TZP ceramics with high density and adequate 
concentration of Yttria did not experience any 
reduction in strength related to phase 
transformation even after long-term clinical 
service. Also, researchers reported that 
commercial Y-TZP ceramics still had adequate 
stability after being subjected to long-term 
clinical and experimental aging procedures and 
no aging-related mechanical destruction was 
noted (35). The results of the current study 
regarding no significant change in FS of 
Zirkonzahn and Mamut specimens following 
aging was in accord with the findings of 
previous studies (27, 35). 
 

Conclusion: 
 
Aging had no significant effect on TPFS of 
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Zirkonzahn and Mamut zirconia ceramics. Thus, 
they seem to have adequately high strength for 
application in the clinical setting and they are 
expected to show favorable results in long-term 

clinical service. However, clinical studies are 
required to cast a definite judgment in this 
respect. 
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