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Abstract 
Objective: Amorphous calcium phosphate (ACP) is a reactive solution capable of releasing calcium 
and phosphate ions, conversion to apatite and remineralization of mineral tooth structure. This study 
reviews ACP structure, its properties and its applications in dentistry. 
Methods: In this review study, keywords including “amorphous calcium phosphate”, 
“mineralization”, “hydroxyapatite”, “casein phosphopeptide”, “tissue engineering” and “dentistry” 
were searched in articles published during 1953-2013 in PubMed, Science Direct, Google Scholar, 
Embase and Medline databases. A total of 134 articles were evaluated.  
Results: ACP had high adhesion, adjustable dissociation rate, bone induction and excellent 
biocompatibility without cell toxicity. ACP alone or in combination with casein phosphopeptide 
(CPP) is incorporated into toothpastes, chewing gums, mouth rinses, tooth bleaching gels and food 
products to enhance remineralization and prevent demineralization. Also, it is used as filler in many 
dental materials namely glass ionomers, composite resins and bonding agents. Implant surface 
coating with ACP by radio frequency magnetron sputtering improves osseointegration especially at 
the final stages of healing. 
Conclusion: ACP is suitable for tissue regeneration and healing and is a potential remineralizing 
agent in dentistry. 
Key words: Amorphous calcium phosphate, Casein phosphopeptide, Dentistry, Hydroxyapatite, 
Mineralization, Tissue engineering. 
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Introduction: 
 
ACP is a super-saturated solution of solid 
calcium phosphate particles. Crystalline octa-
calcium phosphate (OCP) or apatite products are 
derived from it (1). It plays a specific role as a 
precursor to bioapatite and in the transitional 
phase of biomineralization (2). In the living 
creatures some amorphous minerals exist that 
are biologically named biominerals and their 
formation process is called biomineralization(1).  
The morphology and structure of non-crystalline 
ACP includes repeating atomic chains with short 
domains/amplitude. It has been shown that many 
minerals are formed as amorphous pre-phases 

(3). These amorphous minerals in dental and 
skeletal structures of marine invertebrates are 
commonly calcium orthophosphate (3). Also, 
similar compounds of amorphous calcium 
phosphate exist in mitochondria (1) and 
sarcoplasmic reticulum (4) of vertebrates, parts 
of the internal ear of shark fetus, milk of 
mammals (5, 6) and tooth enamel (7). Despite 
numerous studies, presence of ACP compounds 
in hard tissues namely bone and tooth has not 
been confirmed (8-10). Moreover, ACP in the 
form of amorphous mineral phases has been 
found in the biomineralized structures of a group 
of animals including auto lit shark and also in 
the form of a carbonated hydroxyapatite 
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precursor in crab’s teeth and in fine bones of sea 
horses (11-13). Recent studies on the formation 
of teeth and bone emphasize the need for the 
presence of transitional amorphous mineral 
precursors for the mineralization of calcium 
carbonate and calcium orthophosphate bases in 
vertebrates and invertebrates (8-10, 12, 14). The 
role of ACP in formation of nano-structured 
hydroxy apatite in highly organized structures 
has been evaluated in some previous studies (9). 
ACP compared with HA and tricalcium 
phosphate (TCP) has better osteoinductive 
properties, biodegradability and bioactivity (15). 
Use of ACP has become popular in medicine, 
orthopedics and dentistry attributed to its 
favorable characteristics such as high adhesion, 
adjustable degradation rate, osteoinduction and 
excellent bioactivity without cell toxicity (16, 
17). This study reviews the structure, properties 
and biological application of ACP in dentistry.  
 
Methods: 
 
In this review study, a search in PubMed, 
Science Direct, Google Scholar, Embase and 
Medline databases was carries out using 
“amorphous calcium phosphate”, 
“mineralization”, “hydroxy apatite”, “casein 
phosphopeptide”, “tissue engineering” and 
“dentistry” keywords. Studies published during 
1953-2013 were searched; 134 were selected and 
reviewed. 
 

Results: 
 
1. Structural characteristics of ACP: The 
history of ACP goes back to 1955 when 
Robinson and Wastone found the newly formed 
mineral component in immature bones that did 
not have a crystalline structure (8, 18). ACP was 
first introduced by Aarons Ponser in mid 1960 
(15). Amorphous ACP was formed by incidental 
combination of 30mM of calcium chloride and 
20mM of sodium acid phosphate (19, 20).  

Eanes, et al. (1965) introduced ACP as a bone 
constituent (19). ACP content of bone decreases 
by aging (21). Under in vivo conditions ACP 
shows better osteoinductive properties than HA 
due to its high reactivity with body fluids. Also, 
it has a biodegradability superior to that of TCP 
(22).  
Having nanometer-sized particles is among the 
most important characteristics of ACP. The 
primary size of these particles ranges from 40-
100 nm (18, 23). Synthesized ACP components 
under electron microscope are in the form of 
ionic clusters with 9.5 Angstrom diameter with 
fixed dimensions and chemical composition of 
Ca4(Po4)6 (24, 25)(Figure 1). Water present in 
ACP (15-20%) usually fills the spaces in 
between ionic clusters (26).  
 

 
Figure 1- Image of ACP under bright field 

TEM 

 
Apatite crystals are formed as the result of 
dissolution of ACP particles in a fixed 
thermodynamic phase. The results of in vitro and 
in-vivo studies have shown that in different pH 
values, amorphous calcium phosphate deposit is 
formed by 1.43/1.5M calcium/phosphate and 
1.50-1.76 M of different carbonates (23, 27). 
Wuthier, et al. (1985) reported that ACPcan also 
deposit with a lower ratio of calcium/phosphate 
ions in a more acidic pH (28).  
In the physiologic pH, ACP is first dissolved and 
re-deposition of solid phase of OCP occurs 
through the growth of core and its hydrolysis to 
a more stable apatite phase (29). OCP may be a 
mediator in conversion of ACP to phosphate 
calcium apatite (30). In a lower pH (below 9.25) 
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OCP and in higher pH values apatite is formed 
(31). Although the exact mechanism of ACP 
stability has yet to be clearly known, by 
presence of sufficient amounts of Mg+2, F-, 
carbonates, pyrophosphates, diphosphonates, 
nucleotides or polyphosphoryl metabolites, 
conversion of synthetic ACP to hydroxyapatite 
can be prevented (32, 33).  
Different ions and proteins are involved in 
biomineralization of ACP to HA (13, 34). 
Dentin protein matrix is a biomineralized protein 
(35) comprised of two main peptides that act as 
a core for deposition of crystalline calcium 
phosphate in direct transformation of ACP to 
HA (14).  
2. Application of ACP in dentistry: 
As stated earlier, the first studies on synthetic 
ACP were performed in mid 1960 (16). 
Recently, application of ACP products in 
medicine and dentistry has been a subject of 
attention. This material is also used as filler in 
ionomer cement (36) for restoration of carious 
lesions to enhance their remineralization or 
prevent demineralization (37) in the form of 
colloidal suspension in tooth pastes (Enamelon 
TM), Recaldent chewing gums, tooth bleaching 
gels and mouthwashes (38-40). 
A: CPP-ACP products 
Casein phosphopeptide contains two common 
peptides of αs1-casein and β-casein (40). CPP 
contains multiple rows of phosphoserine among 
which, 8-9 phosphate groups belong to αs1-
casein and 5 groups belong to β-casein (40). 
Since a specific size is required for coring, phase 
transportation and deposition, phosphoserine 
clusters stabilize ACP in CPP-ACP complexes 
and prevent their growth (41, 42). CPP-ACP 
nano-complexes due to the small size of 
particles are capable of penetrating deep into 
enamel porosities, remineralize enamel crystals 
and prevent enamel demineralization (43).  
GC Tooth Mouse: This product is in the form of 
a soft, sugar-free, water-based topical crème (39) 
and is used for remineralization of dentin and 

enamel for prevention of caries (41, 42,44, 45). 
It is also used for treatment of tooth 
hypersensitivity following bleaching, ultrasonic 
and hand scaling and also as abrasive 
prophylactic paste (41, 42). Studies have 
reported that one time use of this product can 
decrease enamel erosion due to acidic foods and 
beverages by increasing the calcium content in 
the saliva and dental plaque and decreasing the 
critical pH required for dissolution of enamel 
minerals (39, 40, 45). In-vivo and in vitro 
studies published in 2013 have stated that CPP-
ACP is more effective than sodium fluoride 
mouthwash (46) and fluoridated toothpaste (47) 
for remineralization of enamel caries. Also, 
microscopic assessments show that use of CPP-
ACP significantly decreases enamel and dentin 
wear (48). Despite the mentioned advantages, 
Moezizadeh and Motamedi (2012) demonstrated 
that application of GC Tooth Mouse to the 
dentin surface decreases the bond of light cure 
glass ionomer unless polyacrylic acid is applied 
before the use of glass ionomer (49). 
Xylitol or Sorbitol chewing gums: Recaldent is 
among these products (40, 49). Recaldent is a 
very soluble and stable CPP complex containing 
hydroxide, phosphate and calcium ions that have 
a more significant anti-caries effect compared to 
CPP-ACP complex (50).  
Toothpastes: Enamelon TM is a commercial 
product of ACP-containing toothpaste combined 
with sodium calcium phosphosilicate (39, 40, 
51). It is used to remove dentin hypersensitivity 
at the cervical area (52). CPP-ACP and fluoride 
have significant effects on decreasing caries 
(36). Thus, CPP-ACFP as an additive in fluoride 
toothpastes confers considerable anti-caries 
effect.  
Mouth rinses: CPP-ACP in mouth rinses 
significantly increases the level of calcium and 
phosphate ions in supragingival plaque. The 
results of a study by Rose (2000) showed that 
the adhesion of Streptococcus mutans bacteria to 
CPP-ACP compounds is twice their adhesion to 
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pellicle (53). Thus, adhesion of CPP-ACP to 
dental plaque provides a large source of calcium 
in plaque that leads to gradual release of free 
calcium. A competition between CPP-ACP and 
calcium for calcium receptors has been reported 
by Rose (2000). Thus, the attachment between 
calcium and pellicle and attached bacteria is 
decreased (54).  
Food products: CPP-ACP, with no adverse 
effect on taste, can be a selective candidate for 
treatment of demineralization (55). Recent 
studies have shown that application of CPP-ACP 
in drinks (56), sweets (57) and milk products (5, 
6, 58) can prevent their cariogenic properties 
(58). One study showed that sweets containing a 
minimum of 3w% CPP-ACP, by gradual release 
of calcium phosphate when consumed,can be 
used as an anti-caries product (40). 
Dental bleaching agents: Pastes containing 
CPP-ACP applied to teeth before or after 
bleaching (59) or mixed with the bleaching gel 
in similar ratios (60) have shown to have the 
ability to prevent hardness reduction and surface 
roughness of bleached teeth without interfering 
with the effects of bleaching. 
Azarpazhooh and Limeback (2008) reported that 
due to the insufficiency of clinical trials and 
their inefficacy, they could not cast a final 
judgment on the long-term effects of casein 
derivatives especially CPP-ACP in prevention of 
caries, dentin sensitivity or xerostomia (40).  
B: ACP as filler in resin compounds: 
ACP has been used as filler in polymer resins 
(61). Studies have shown that composites 
containing ACP have excellent biocompatibility 
and may be capable of remineralizing the teeth 
because they release significant amounts of 
calcium and phosphate into the saliva. These 
materials are deposited on teeth as apatite 
minerals and may simulate the role of bone and 
tooth HA (62, 63). Also, these composites 
compared to ceramic fillers or silanized glasses 
are more hydrophilic and by forming weak 
interfaces show lower durability and mechanical 

properties. Due to excess water sorption of 
resins and fillers, a weak bond is formed 
between the matrix and filler and provides a low 
quality treatment in the clinical setting (39, 62, 
64). Polyethylene hydrophilic oxides present in 
these composites, despite the ability to form 
multiple stable hydrogen bonds, affect the 
affinity of ACP for accumulation and water 
sorption and also influence the mechanical 
properties of composites (65).  
At present, nano-composites containing 
amorphous nanocalcium phosphate (NACP) 
particles have a combination of favorable 
mechanical properties and acid neutralization 
enhancing tooth remineralization (66). For the 
first time in 2011 it was demonstrated that nano-
particulate ACP composites had flexural 
strength and modulus of elasticity equal or 
higher than those of commercial composites. By 
increased release of calcium and phosphate 
similar to composites containing calcium 
phosphate, they have the remineralizing ability 
and can be considered as anti-caries restorations 
(67). They also have strength higher than RMGI 
and inhibit the growth of S. mutans and decrease 
the risk of secondary caries (68). 
Orthodontic adhesives containing ACP 
compared to conventional adhesives have lower 
bond strength but have shown satisfactory 
clinical results (69, 70).  
New bonding systems containing ACP (Aegis 
Ortho) compared to conventional orthodontic 
adhesives (Transbond XT) have shown less 
flexural strength indicating greater material loss 
at the bracket-adhesive interface compared to 
adhesive-enamel interface (61).  
Bonding agents containing silver nanoparticles 
(NAg) and NACP decrease acid production and 
number of microorganisms in dental plaque 
biofilm without compromising the bond 
strength. These new bonding agents, due to the 
remineralizing effects of NACP and antibacterial 
activity of NAg may be extensively used in 
bonding systems in the future (71).  
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C: Application of ACP for bone repair 
Many studies have evaluated calcium phosphate 
containing compounds such as ACP and HA for 
bone repair. These compounds do not have the 
side effects of immune system stimulation and 
inadequate blood supply associated with 
conventional materials (72, 73). Different ACP 
compounds due to excellent biocompatibility, 
superior osteoinduction compared to apatites and 
higher biodegradability compared to TCP are 
extensively used (74, 75). New bone formation 
depends on the degree of ACP absorption and 
apatites with weak crystalline structure (76). 
Combination of ACP with polylactic acid is used 
for reinforcing cell biocompatibility and forming 
a porous surface for the fabrication of bone and 
cartilaginous scaffolds (73, 77).  
Non-crystalline compounds of carbonated 
calcium phosphate along with polylactic and 
glycolic acids are biodegradable and can form a 
porous bone scaffold and thus are ideal for bone 
repair (78). Bone-like apatites are also used for 
optimal bone formation due to ideal surface 
structure for osteoblasts (78).  
D: Dental implants coated with ACP 
The most common approach for dental implant 
surface preparation includes physical changes in 
the topography or alterations in the chemical 
composition of surface with presence of non-
organic phases (79). Regardless of surface 
modification, the ultimate goal is to improve 
primary bone healing and osseointegration 
allowing implant loading in the soonest time 
possible (80-82).  
Titanium dental implants covered with calcium 
phosphate have greater osseointegration 
compared to the uncoated ones. Phase and 
microstructure of calcium phosphate coats affect 
the osseointegration (83). Although coating the 
titanium surface of implants with calcium 
phosphate leads to primary osseointegration, 
degradation of the coated layer and implant-coat  
debonding have also been reported affecting the 
long-term prognosis (84).  

Different techniques such as plasma spray, 
sputtering, sol-gel technique and electrophoretic 
deposition have been reported for the application 
of calcium phosphate to the implant surface. 
Plasma spray coating is highly popular due to 
high deposition rate. However, this method 
creates a weak bond to metal substrate (84). 
ACP coat applied to implants made of titanium 
or Ti-6A1-4V alloy using Resonance Frequency 
(RF) magnetron sputtering forms a very thin 
500nm layer with bond strength above 60MPa at 
room temperature (84).  
According to Yokota et al. (2012) ACP coated 
dental implants enhance bone formation 
compared to uncoated implants. On the other 
hand, ACP coating is bio-absorbable (83). 
Bonfante et al. (2012) stated that chemical and 
topographic differences exist between the Ti-
6A1-4V implants treated with plasma-sprayed 
hydroxyapatite (PSHA) and ACP-coated 
surfaces. When assessed by bone and tissue 
morphological parameters, both surfaces show 
osteoconductive properties in root-form implants 
(85).  
A study in 2012 showed that Ti-29Nb-13Ta-4.6 
Zr (TNTZ) implants made of a new alloy of 
beta-titanium, provide an osseointegration 
similar to that of pure implants. Surface coating 
of TNTZ implants with ACP by RF magnetron 
sputtering improves osseointegration especially 
at the final phases of healing (86). 
 

Discussion: 
 
ACP is found in the skeleton of many living 
creatures particularly invertebrates. It can also 
be synthesized using highly advanced techniques 
(34). ACP can be converted to OCP and apatite 
depending on the environmental pH (31).  
ACP is incorporated into some dental products 
in the form of CPP-ACP nano-complexes with 
remineralizing properties. It also prevents 
demineralization (43). However, long-term 
studies are not available on its effects on 
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prevention of tooth hypersensitivity (87, 88). 
Composites containing ACP have anti-caries 
properties but due to hydrophilicity have lower 
durability and mechanical properties than other 
composites (62, 64). At present, nanotechnology 
has greatly helped in enhancing their mechanical 
properties (67).  
Combination of ACP and polylactic acids can be 
used for the fabrication of bone and 
cartilaginous scaffolds (73, 77).  
Application of ACP due to its bio-absorption 
and osteoconduction properties for implant 
surface coating can enhance bone formation and 
osseointegration (83). Based on the method of 
application in surface of TNTZ implants, it can 
improve osseointegration at the final stages of 
healing (86). 
 

Conclusion: 

ACP is a mineral phase formed in mineralized 

tissues and is involved as an important mediator 
in apatite formation. ACP is a suitable material 
for tissue regeneration and repair and is a 
potential remineralizing agent in dentistry. 

This compound alone or in combination with 
casein derivatives (such as CPP) is a safe and 
effective material to promote oral health. It can 
be incorporated into dental hygiene products due 
to optimal mechanical properties and excellent 
biocompatibility and is increasingly used in 
dentistry. ACP compared with TCP and HA has 
the ability to induce bone scaffold and is more 
biodegradable. When used for titanium implant 
surface coating, it can improve osseointegration. 
Considering the advances in tissue engineering 
and biomaterial science, application of ACP will 
be increased in the future. 
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