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Objectives Root resorption is a dangerous side effect in orthodontics, and maxillary incisors are at the highest risk for 
root resorption. It is important to understand optimal force considerations for patients with altered root lengths.The 
purpose of this study was to investigate the effects of root length on stress distribution on roots by means of three-
dimensional finite element method (FEM). 
Methods Three dimensional FEM models of maxillary central and lateral incisors were made. Then, root length of the 
incisors was changed in the increments of 1 mm from 0-4 mm. Applying 50 g (0.5 N) of force perpendicular to the 
tooth crown simulated uncontrolled tipping. Stresses and strains for each model were calculated and Pearson 
correlation coefficient was used to analysis the data. 
Results There were significant correlations between root length of incisors and maximum stress in PDL. In the centrals 
with various root lengths, maximum stress was between 0.010884 and 0.056520 MPa, and in the laterals, it was 
between 0.027297 and 0.221040 MPa. By reducing root length of incisors, the maximum stress in buccal apical (r= 
0.933,p<0.001 and 0.995, p<0.001 prospectively) and lingual crestal areas (r= 0.974 p=0.005 and 0.992, p=0.001  
respectively) were reduced. 
Conclusion Although in lateral incisors, stress at the lingual crestal area was more than buccal apical area, in central 
incisors with more than 2 mm resorption, the stress distribution of buccal apical was higher. Therefore, in maxillary 
central incisors with more root resorption, force control might be even more critical. 
Keywords Finite element, Root resorption, Orthodontics 

 

Introduction 
 

Application of external forces to the teeth to produce 

orthodontic tooth movement carries some risks, one of 

which is irreversible root resorption.
1
 Root resorption is a 

dangerous side effect in orthodontics which has to be 

avoided.
2
 This is a biological response to an orthodontic 

force 
3
,and root resorption does not observed in only 20% 

of orthodontic treated maxillary incisors.
4
 This process 

destroys the tooth root tissue and the affected patient could 

even loose the tooth because of the loss of its anchorage.
2 

It 

is a biological and mechanical process which is strongly 

dependent on individual patient factors, but has not been 

fully studied. Furthermore, genetic factors, forces and 

moments, as well as their duration during application are 

co-factors.
2, 5

 

In addition, tapered and short roots that result from alveolar 

bone loss or apical root resorption are prone to tipping.
6
 

Shaw et al.
7
 determined the relationship between the 

thickness of cementum and magnitude of stress at root apex 

and concluded that the mechanical stress was increased at 

the root apex with the increased thickness of an apical 

cementum. Since many orthodontic patients have root 

resorption induced by orthodontic treatment, the influence 

of root length on the biomechanical behavior of a tooth is 

important. It has been shown that roots with a short apex 

enhance root resorption and patients at risk of severe apical 

root resorption can be identified according to the amount of 

resorption during the initial treatment stages.
3, 8, 9

 If 

orthodontic force is concentrated in a particular region of 

the deviated root shape, root resorption may occur.
3, 10

 

Thus, it is of clinical significance to understand optimal 

force considerations for the patients with altered crown-to-

root ratios.
6
  

In order to evaluate the true relationship between root 

resorption and applied orthodontic forces, it is necessary to 

quantify the periodontal stress and strain generated by the 

orthodontic forces in teeth with different root lengths. 

Previous clinical studies 
11-14

 have not fully described these 

variables with tooth displacements because of difficulties in 

precisely quantifying the variations in root length and 

alveolar bone height for patients or subjects. In vivo 

measurement of stress is difficult at best; thus, development 

of an effective model for this system is a worthy goal.
1
 One 

analytical approach to studying stress during tooth, one that 

allows for reasonable approximation of the biological 

tissues, is the finite element method (FEM).
3
 

In orthodontics, FEM has been used successfully to model 

the application of forces to single-tooth systems.  In FEM, 

the structure to be tested is divided into a finite number of 

elements which are connected to each other by nodes. 

Variables of interest are then approximated using 

mathematical functions.
1, 15

 The ability of FEM to handle 

material in homogeneity and complex shapes makes the 

FEM the most suitable method for the analysis of stress in 

the periodontium.
16

 

In this method, the initial tooth displacement has been used 

for evaluating optimal orthodontic force applications and 

subsequent tooth movements.
6, 17, 18

 It must be stated that 

patterns of this initial displacement may be influenced by 

some variables such as tooth and root dimensions.
6
  

The maxillary incisors undergo the most detailed tooth 

movement and are subjected to orthodontic force for a 

prolonged period. Since maxillary central and lateral 
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incisors are at the highest risk for root resorption than all 

other teeth, they were chosen in this study.
19, 20

  

To our knowledge there is no FEM based study which 

evaluated stress distribution in maxillary incisors with 

different root lengths. Thus, the purpose of this study was 

to investigate the effects of root length on stress distribution 

on roots by biomechanical concepts by means of three-

dimensional finite element analysis. 

 

Materials and Methods 

 
There are 3 primary considerations in the development of 

the 3-dimensianal FEM tooth model: geometry of the teeth 

and periodontal structures, material properties, and loading 

configuration. 

First, finite element model of an ideal central and lateral 

incisors with layer separating enamel, dentin, pulp and 

cementum including PDL, and an alveolar bone was 

prepared. The geometry of our 3-dimensional finite element 

model of maxillary incisors was created by designing the 

tooth according to the dimensions and morphology found in 

a standard dental anatomy textbook with ANSYS 

WORKBENCH R. 14 software. 

Model A was constructed with the length of 23 mm and 

root length of 12 mm based on the data derived from 

wheeler
’
s dental anatomy, physiology, and occlusion.

21
 

Each structure of the incisors was meshed using an auto-

meshing routine in the finite element analysis program. The 

material properties for all the models were defined as linear 

and are shown Table 1.
22 

Table 1- Material parameters used in the finite element model. 

Material 
Young,s Modulus 

(N/mm2) 
Poisson,s Ratio 

Enamel 20×103 0.3 
Dentin 20×103 0.3 

Periodontal ligament 66×10-2 0.4 

Bone 20×103 0.3 
Bracket and Wire 210×103 0.3 

  

Boundary conditions and solution: The element shape 

described in the model was a solid tetrahedral element, 

which is the best option to fit the curvature of the model 

objects. The FEM approximately consisted of 148915 

elements and 270603 nodes. Fixed boundary conditions 

were chosen for all the nodes at the upper surface of the 

maxilla. 

The PDL region was constructed from 1 to 3 element layer, 

depending on the geometry and curvature of the root. The 

mechanical properties of the FEM were considered to have 

linear elasticity and isometric properties of the same 

quality. Based on the other studies
23

 the thickness of the 

PDL was considered to be 0.25 mm evenly. 

In the next step, idealized brackets for load application 

were generated on the labial surfaces of the teeth. The 3D 

FEM of 0.016 × 0.022 inch standard edgewise brackets 

were made and attached to the crown such that the force 

applying point was equal to the center of the bracket slot. 

Next step was to prepare 5 models with various root 

lengths. Root lengths of central and lateral incisors were 

changed in the increments of 1 mm from 0 to -4 mm. 

Since one orthodontic movement that has been reported to 

increase the risk of root resorption is uncontrolled tipping, 
1, 

24
 the loading configuration was designed to mimic this 

movement. Uncontrolled tipping was simulated by the 

application of a force acting in the buccal-lingual direction. 

(M/F=0) 

Applying 50 g (0.5 N) of force perpendicular to the tooth 

crown simulated uncontrolled tipping. This lingually 

directed force was applied at a point on the labial surface of 

the crown (bracket position) 4 mm gingival to the incisal 

edge. No simulated wire and no additional moment was 

applied, as the aim of this study was to investigate only 

uncontrolled tipping movement. Finally, this force was 

applied on the mesh of the central and lateral incisor 

models with different root lengths. Stresses and strains for 

each model on the application of each root length were 

calculated in ANSYS WORKBENCH R. 14 software using 

linear structural analysis. The personal computer system 

used in this study was Intel, Core i7, RAM 8GB. 

Interpretation of stress from FEM pictures: The stress 

generated in FEM pictures was represented by various 

colors, ranging from blue to red. Maximum stress areas 

were marked as (MX) and minimum stress areas marked as 

(MN). However, the values for maximum and minimum 

stress areas were different. The mean and standard 

deviation were used to describe the data. Also, Pearson 

correlation coefficient was used to investigate the 

relationship between data. 

 

Results 

Figures 1 through 4 show the changes in stress distribution 

on the buccal and lingual surfaces of PDL of central and 

lateral incisors with 4 levels of root resorption (1, 2, 3, and 

4 mm resorption) in response to orthodontic force without 

counterbalancing moments. The stress distribution in the 

FEM model was represented by color coding, ranging from 

red to blue, with the areas of maximum stress being 

represented in red and blue showing areas of minimal 

stress. Tipping forces resulted in the greatest stress at the 

lingual of crest of lateral incisor (0.221040 MPa). The 

highest PDL stress was observed in lingual crestal areas of 

central and lateral incisors with standard root lengths (Table 

2). 

 
 

Figure 1- Stress distribution in the lingual surfaces of PLD of 

central incisors with 0, 1, 2, 3, and 4 mm resorption in response to 

orthodontic tipping force 

 



                                                                                                                                                                        Original Article                                                                               
Stress distribution pattern in roots of incisors with various root resorptions                                                                          Morteza Oshagh 

  

 
  Journal Dental School; Vol 36, No.1, Winter 2018; 12-17                                                                                                                                                                      14                                                                                                                                                                        

 
 

Figure 2: Stress distribution in the buccal surfaces of PLD of 

central incisors with 0, 1, 2, 3, and 4 mm resorption in response to 

orthodontic tipping force 

 

 
 

Figure 3: Stress distribution in the lingual surfaces of PLD of 

lateral incisors with 0, 1, 2, 3, and 4 mm resorption in response to 

orthodontic tipping force 

 

 
Figure 4: Stress distribution in the buccal surfaces of PLD of 

lateral incisors with 0, 1, 2, 3, and 4 mm resorption in response to 

orthodontic tipping force 

 

 

Table 2- The mean of maximum stress distribution in central 

and lateral incisors with different root lengths in lingual crestal 
and also buccal apical areas. 

 Mean of maximum 

stress in central 

incisor (MPa) 

Mean of maximum 

stress in lateral 

incisor (MPa) 

Ligual crestal area 0.031177±0.020573 0.177466±0.032640 

Buccal apical area 0.016693±0.003956 0.034306±0.005790 

 

In the centrals with various root lengths, maximum stress 

was between 0.010884 and 0.056520 MPa, and in the 

laterals, it was between 0.027297 and 0.221040 MPa.  

Table 2 shows the mean of maximum stress distribution in 

different areas of central and lateral incisors with different 

root lengths. 

In central incisors with normal root length and also -1 and -

2 mm root lengths, the stress concentration of lingual 

crestal was higher than buccal apical areas. But with -3 and 

-4 mm root lengths, the stress distribution of buccal apical 

was higher than lingual crestal areas. All the models of 

lateral incisors had a tendency to concentrate stress at the 

lingual crestal area more than buccal apical area. 

There were significant correlations between root length of 

incisors and maximum stress in PDL. Therefore, with 

reducing root length of central and lateral incisors, the 

maximum stress in buccal apical (r= 0.933, p<0.001 and 

0.995, p<0.001 respectively) and lingual crestal areas (r= 

0.974 p=0.005 and 0.992, p=0.001   respectively) were 

reduced significantly. 

Discussion 

During orthodontic tooth movement, root resorption is the 

pathological phenomenon that is constantly occurring on 

the surface of the cementum. In order to correlate the root 

resorption and the force magnitude during various tooth 

movements, the stress distribution within the cementum 

should be considered rather than the stress within the 

PDL.
25

 In this study, experimental orthodontic force was 

applied to central and lateral incisors with various root 

lengths and their stress distribution on the root was 

evaluated. In general, the stress in crestal and apical areas 

of root reduced by reducing root length when uncontrolled 

tipping force of 50 g was applied.  

The cementum covering an apical third of a root has lower 

value of hardness and elastic modulus than cementum 

covering the middle and cervical third of the root and as 

some degree of apical external root resorption is a frequent 

and unavoidable complication of orthodontic treatment, 

during treatment planning, the patient or parent should be 

warned of this risk.
26-29

 Also, Rex et al.
30

 found that an 

apical cementum is less mineralized than the cementum of 

the cervical and middle thirds of the root; hence, an apical 

third is more susceptible to the root resorption. Moreover, 

Jimenez-Pellegrin and Arana-Chavez concluded that 

cementum repair occurs after resorption during rotation 

movement and a noncollagenous matrix protein osteopontin 

plays a role in both resorbing and repairing.
31

 

Rudolph et al. reported that most of the forces from tipping 

was concentrated at the crest of the alveolar, not at the 

apex.
1
 These results are in agreement with previous 

studies.
32, 33

 Also in our study, the highest PDL stress was 

observed in lingual crestal areas of central and lateral 

incisors with standard root lengths. Tipping forces resulted 

in the greatest stress at the lingual of crest of lateral incisor 

(0.221040 MPa). In lateral incisors with different root 

resorptions, stress in the lingual crestal area was more than 

buccal apical area; but in central incisors with more than 2 

mm resorption, the stress distribution of buccal apical was 

higher than lingual crestal areas. This might be attributed to 

the different crown-root ratio of standard central and lateral 

incisors. Jeon et al. concluded that increased crown-root 

ratio caused a significant increase in pressure and stress 

concentrations in the PDL.
16

 

Kamble et al. found that in short root model, significant 

stress was concentrated at the neck of the root.
3
 Although 

theoretically, we could not explain the reason for reduced 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jimenez-Pellegrin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17693375
https://www.ncbi.nlm.nih.gov/pubmed/?term=Arana-Chavez%20VE%5BAuthor%5D&cauthor=true&cauthor_uid=17693375
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stress at the root with reduced root length, clinically and as 

orthodontists, we should avoid jiggling or excessive force, 

especially in central incisors with greater resorption, since 

the root tip is more susceptible to the resorption rather than 

the cervical parts of the root.
25

 

The key parameter indicating beginning root resorption is 

an increased value for hydrostatic pressure in the PDL
34 

, 

which may cause a collapse of the capillaries and a 

dysfunction of blood supply.
2
 The range of capillary blood 

pressure has been stated to be within the range of 15 mmHg 

(venous) to 35 mmHg (arterial) (equivalent to 0.0020- 

0.0047 MPa) in the standard literature.
35

 In our study, in the 

centrals with various root lengths, maximum stress was 

between 0.010884 and 0.056520 MPa and, in the laterals, it 

was between 0.027297 and 0.221040 MPa.  

Thongudomporn and Freer 
9
 have reported that the root 

with a short apex enhanced root resorption, which 

supported the finding of the study by Kample et al.
3
 In their 

research, the biomechanical burden on the root apex was 

likely to decrease during tipping in blunt-shaped roots 

compared with angular-shaped roots.
3
 In our study, root 

length was reduced in straight increments of 1 mm. 

Therefore, root shapes became angular at the corners in 

resorbed samples. 

Also, some radiographic studies 
9, 36

 have reported that 

blunt-shaped roots frequently show root resorption when 

compared with normal roots. Shaw et al.
7
 concluded that 

the mechanical stress was found to increase at the root apex 

with an increase in the thickness of an apical cementum; 

therefore, close attention must be paid to deviated root 

shape.
3
 

Maxillary incisors were chosen because an apical root 

resorption occurs mainly in the maxillary anterior teeth.
19, 20  

The maxillary incisors most commonly show EARR after 

orthodontic treatment and are used to determine root 

resorption during experimental studies.
37

 It has been shown 

that when there is no root resorption of the maxillary or 

mandibular incisors, resorption of other teeth is 

improbable.
38

  

What are the clinical implications of this study? In clinical 

cases, the bracket slot, arch wire, the resin-tooth, and resin-

bracket interface could also influence the distribution of 

stress within the periodontal tissues when orthodontic 

forces are applied.
25, 39

 All these factors should be included 

in future studies of FEM to simulate the nearest possible 

clinical condition and elucidate the stress pattern during 

orthodontic tooth movement.
25

 In our study, simulations did 

not take these into account, the results may represent the 

theoretical best-case scenario that cannot be achieved 

clinically. Although the link between external forces and 

apical root resorption is far from clear-cut,
1
 in a patient 

whose incisors show previous root resorption, the forces 

must be applied with caution. 

Experimental techniques have their limitations in 

measuring internal stress levels of the PDL.
25

 Strain gauge 

techniques may be useful in measuring tooth displacement; 

however, they cannot be directly placed in the PDL without 

causing tissue damage.
40

 It is relevant noting that any 

comparison of laboratory results with clinical outcomes 

should be interpreted with caution, since the photoelastic 

method does not faithfully reproduce the role played by the 

periodontal ligament.
41

 The FEM is a noninvasive, accurate 

method that permits the simulation of various amounts of 

root resorption and also analytically applies various force 

systems at any point and in any direction.
3, 25

 FEM has 

many advantages over other methods, which are 

highlighted by the ability to include heterogeneity of tooth 

material and irregularity of the tooth contour in the model 

design.
1
 The accuracy of computer models however 

depends on assigned constitutive properties and the results 

are based on the nature of modeling systems. For this 

reason, the procedure of modeling is of paramount 

importance.
25

 The limitations of any model include 

approximations in the material behaviors and shapes of the 

tissues. It must be stated that cementum-dentin junction 

(CDJ) and cementum significantly influence the stress 

distribution within the tooth supporting structure. However, 

most of the reported FE analysis did not take CDJ and 

cementum into account, which possibly resulted in 

overestimated stress values in the PDL and alveolar bone. 

Similar to previous works, the PDL was treated as linear-

elastic and isotropic, even though the PDL exhibited 

anisotropy and non-linear viscoelastic behavior because of 

tissue fluid. The material properties of the periodontal 

ligament, the morphology of the root, and the alveolar bone 

are patient specific. Therefore, the M/F values generally 

advocated to obtain orthodontic tooth movement should be 

used only as guidelines. To be effective and accurate, the 

force system selected for a specific tooth movement must 

be monitored and the outcome compared with the predicted 

tooth movement.
6, 42-45

 There are no reliable and adequate 

data that pertain to anisotropic and non-linear properties of 

the PDL.
16

 For all the calculations, this is an idealization of 

the realistic behavior of the tooth-supporting structures 
46

 

and linearity assumptions about force distribution are 

problematic.
1
 However, in combined experimental and 

numerical studies, this assumption has been proved to be 

valid for orthodontic loading and is sufficient to describe 

initial tooth displacements.
47-49

 There are insufficient data 

available regarding the material properties of PDL since it 

is not considered as an engineering material. Further studies 

should explain the exact material nature of PDL in young 

and adult individuals.
25

 

In the present study, initial stress and strains were 

calculated using the FEM. After orthodontic force was 

applied, histological changes can alter the physical 

properties of the tissues and, therefore, Young
’
s modulus 

and Poisson
’
s ratio.

32
 During force application, the physical 

properties, vascular, cellular, and extracellular components 

of the cementum and periodontal ligament are altered.
27,50-52

 

For these reasons, the secondary response could be different 

from the initial response of the PDL. To overcome these 

limitations, it is necessary to develop a more accurate 

modeling technique and a time-dependent 3D FEM 
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analysis. The future improvements in software and updated 

versions could help in the refinement of meshing process 

and creating a more accurate 3D FEM model.
25 

 

This study had some limitations as calculations were made 

using a mathematical model. The results were based on the 

fact that the thickness of the PDL was uniformly 0.25 mm. 

However, the PDL had an hourglass shape and its thickness 

was different according to age, position, and individual 

variations.
23

 Also, the errors associated with the bony 

tissues, deformation of the bracket, forces of circum-oral 

muscles, and bite forces were not considered in our study. 

 

Conclusion 

Although it must be stated that theoretical numerical 

models have restrictions with respect to their representation 

of living biological structures, clinically, this stress 

distribution can be taken to mean that, with reducing root 

length of maxillary incisors, the maximum stress in buccal 

apical and also lingual crestal areas are reduced 

significantly. 

Although in lateral incisors with different root resorptions, 

stress in the lingual crestal area was more than buccal 

apical area, in central incisors with more than 2 mm 

resorption, the stress distribution of buccal apical was 

higher than lingual crestal areas. Therefore in maxillary 

central incisors with more root resorption, force control 

might be even more critical. 
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