Assessing the Impact of Sodium Hyaluronate Eye Drops on the Ocular Surface Microbiome: Implications for Dry Eye Management and Ocular Health Eye Microbiome
Journal of Ophthalmic and Optometric Sciences,
Vol. 5 No. 4 (2021),
1 May 2023
,
Page 1-13
https://doi.org/10.22037/joos.v5i4.40478
Abstract
Abstract:
Background:
A powerful immunoregulatory function is provided by the ocular surface microbiome, which contributes to ocular pathogenesis, physiological integrity, and pathogenesis of ocular diseases. Using sodium hyaluronate eye drops (with or without a preservative) as a remedy for dry eye, we contrasted the bacterial communities' diversity and composition on the ocular surface before and after usage.
Methods:
We randomly divided 16 healthy adults into two groups. From each participant was required to provide a microbial sample at the start and after two weeks of the intervention. After sodium hyaluronate eye drops were administered, diversity and classification differences were compared between the groups.
Results:
Results of the present study indicated that there was a significant difference between the bacterial communities in the eyes of the two groups of healthy individuals. Although sodium hyaluronate eye drops (with or without preservatives) did alter the bacterial community, the results of alpha and beta diversity showed no significant differences between individuals or between groups.
Conclusion:
Eye drops containing sodium hyaluronate may affect the eye's bacterial community with or without benzalkonium chloride (BAC) levels. Depending on the individual and the eye, these changes may vary.
- Ocular Surface Microbiota
- Preservatives
- Sodium Hyaluronate Eye Drops
How to Cite
References
Cavuoto KM, Banerjee S, Miller D, Galor A. Composition and comparison of the ocular surface microbiome in infants and older children. Translational vision science & technology. 2018;7(6):16-.
Structure, function and diversity of the healthy human microbiome. nature. 2012;486(7402):207-14.
Kavianfar A, Taherkhani H, Ghorbani F. Utilizing Microbiome Approaches for Antibiotic Resistance Analysis; an Ocular Case Evaluation. Journal of Ophthalmic and Optometric Sciences. 2021;5(1).
Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Investigative ophthalmology & visual science. 2016;57(13):5116-26.
Dong Q, Brulc JM, Iovieno A, Bates B, Garoutte A, Miller D, et al. Diversity of bacteria at healthy human conjunctiva. Investigative ophthalmology & visual science. 2011;52(8):5408-13.
Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clinical Microbiology and Infection. 2016;22(7):643. e7-. e12.
Ozkan J, Willcox MD. The ocular microbiome: molecular characterisation of a unique and low microbial environment. Current eye research. 2019;44(7):685-94.
Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM, Vishnivetskaya T, et al. Biogeography of the ecosystems of the healthy human body. Genome biology. 2013;14:1-18.
Wen X, Miao L, Deng Y, Bible PW, Hu X, Zou Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults. Investigative ophthalmology & visual science. 2017;58(14):6030-7.
Deng Y, Wen X, Hu X, Zou Y, Zhao C, Chen X, et al. Geographic difference shaped human ocular surface metagenome of young Han Chinese from Beijing, Wenzhou, and Guangzhou cities. Investigative Ophthalmology & Visual Science. 2020;61(2):47-.
Cavuoto KM, Galor A, Banerjee S. Anatomic characterization of the ocular surface microbiome in children. Microorganisms. 2019;7(8):259.
Ozkan J, Willcox M, Wemheuer B, Wilcsek G, Coroneo M, Thomas T. Biogeography of the human ocular microbiota. The ocular surface. 2019;17(1):111-8.
Zilliox MJ, Gange WS, Kuffel G, Mores CR, Joyce C, de Bustros P, et al. Assessing the ocular surface microbiome in severe ocular surface diseases. The ocular surface. 2020;18(4):706-12.
Zhang Y, Liu Z-R, Chen H, Fan Y-C, Duo J, Zheng H, et al. Comparison on conjunctival sac bacterial flora of the seniors with dry eye in Ganzi autonomous prefecture. International Journal of Ophthalmology. 2013;6(4):452.
Suto C, Morinaga M, Yagi T, Tsuji C, Toshida H. Conjunctival sac bacterial flora isolated prior to cataract surgery. Infection and Drug Resistance. 2012:37-41.
Seal D, McGill J, Mackie I, Liakos G, Jacobs P, Goulding N. Bacteriology and tear protein profiles of the dry eye. British journal of ophthalmology. 1986;70(2):122-5.
Kavianfar A, Salimi M, Taherkhani H. A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems. Journal of Ophthalmic and Optometric Sciences. 2021;5(2):57-72.
Watters GA, Turnbull PR, Swift S, Petty A, Craig JP. Ocular surface microbiome in meibomian gland dysfunction. Clinical & Experimental Ophthalmology. 2017;45(2):105-11.
Hori Y, Maeda N, Sakamoto M, Koh S, Inoue T, Tano Y. Bacteriologic profile of the conjunctiva in the patients with dry eye. American journal of ophthalmology. 2008;146(5):729-34. e1.
Jaenen N, Baudouin C, Pouliquen P, Manni G, Figueiredo A, Zeyen T. Ocular symptoms and signs with preserved and preservative-free glaucoma medications. European journal of ophthalmology. 2007;17(3):341-9.
Chen W, Li Z, Hu J, Zhang Z, Chen L, Chen Y, et al. Corneal alternations induced by topical application of benzalkonium chloride in rabbit. PloS one. 2011;6(10):e26103.
Ye J, Wu H, Zhang H, Wu Y, Yang J, Jin X, et al. Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011;249:1681-7.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods. 2016;13(7):581-3.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology. 2019;37(8):852-7.
Prüsse E, Quast C, Yilmaz P, Ludwig W, Peplies J, Glöckner FO. SILVA: comprehensive databases for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches. 2011:393-8.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10.
Delbeke H, Younas S, Casteels I, Joossens M. Current knowledge on the human eye microbiome: a systematic review of available amplicon and metagenomic sequencing data. Acta Ophthalmologica. 2021;99(1):16-25.
Zhong Y, Fang X, Wang X, Lin Y-A, Wu H, Li C. Effects of sodium hyaluronate eye drops with or without preservatives on ocular surface bacterial microbiota. Frontiers in Medicine. 2022:258.
Kathuria A, Shamloo K, Jhanji V, Sharma A. Categorization of marketed artificial tear formulations based on their ingredients: a rational approach for their use. Journal of Clinical Medicine. 2021;10(6):1289.
Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo C-K, et al. TFOS DEWS II definition and classification report. The ocular surface. 2017;15(3):276-83.
- Abstract Viewed: 101 times
- pdf Downloaded: 95 times