A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems Eye Microbiome
Journal of Ophthalmic and Optometric Sciences,
Vol. 5 No. 2 (2021),
14 December 2022
,
Page 57-72
https://doi.org/10.22037/joos.v5i2.39708
Abstract
In the field of computer science, Artificial Intelligence can be considered one of the branches that study the development of algorithms that mimic certain aspects of human intelligence. Over the past few years, there has been a rapid advancement in the technology of computer-aided diagnosis (CAD). This in turn has led to an increase in the use of deep learning methods in a variety of applications. For us to be able to understand how AI can be used in order to recognize eye diseases, it is crucial that we have a deep understanding of how AI works in its core concepts. This paper aims to describe the most recent and applicable uses of artificial intelligence in the various fields of ophthalmology disease.
- Artificial Intelligence
- Machine Learning
- Deep Learning
- Eye Diseases
- Glaucoma
- Age-related Macular Degeneration
How to Cite
References
Nuzzi R, Boscia G, Marolo P, Ricardi F. The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review. Front Med. 2021;8:1–11.
McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag. 2006;27(4):12.
Schwab K. The fourth industrial revolution. Currency; 2017.
Pham Q-V, Liyanage M, Deepa N, VVSS M, Reddy S, Maddikunta PKR, et al. Deep learning for intelligent demand response and smart grids: A comprehensive survey. arXiv preprint arXiv:210108013. 2021.
Rahimy E. Deep learning applications in ophthalmology. Curr Opin Ophthalmol. 2018;29(3):254–60.
OxfordSparks. What is Machine Learning? - YouTube. 2017;0–19.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.
Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221.
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy. Comput Biol Med. 2019;109:254–62.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–32.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.
Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PloS one. 2017;12(4):e0174944.
Bejnordi BE, Zuidhof G, Balkenhol M, Hermsen M, Bult P, van Ginneken B, et al. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J Med Imaging. 2017;4(4):44504.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.
Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–93.
Alaeddini Z. A Review on Machine Learning Methods in Diabetic Retinopathy Detection. J Ophthalmic Optom Sci. 2021;5(1).
Hooshmand SA, Zarei Ghobadi M, Hooshmand SE, Azimzadeh Jamalkandi S, Alavi SM, Masoudi-Nejad A. A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Mol Divers. 2021;25(3):1717–30.
Alaeddini Z. A Review of the Latest Machine Learning Advances in Cataract Diagnosis. J Ophthalmic Optom Sci. 2021;4(4):46–60.
Kavianfar A, Taherkhani H, Ghorbani F. Utilizing Microbiome Approaches for Antibiotic Resistance Analysis ; an Ocular Case Evaluation. J Ophthalmic Optom Sci. 2021;5(1).
Kamal M, Shanto HI, Hossan MM, Hasnat A. A Comprehensive Review on the Diabetic Retinopathy, Glaucoma and Strabismus Detection Techniques Based on Machine Learning and Deep Learning. Eur J Med Heal Sci. 2022;4(2):24–40.
Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2242–50.
Mayro EL, Wang M, Elze T, Pasquale LR. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye (Lond). 2020 Jan;34(1):1–11.
Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992 Feb;99(2):215–21.
Elze T, Pasquale LR, Shen LQ, Chen TC, Wiggs JL, Bex PJ. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface. 2015 Feb;12(103).
Wang M, Shen LQ, Pasquale LR, Petrakos P, Formica S, Boland M V, et al. An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis. Invest Ophthalmol Vis Sci. 2019 Jan;60(1):365–75.
Garcia G-GP, Lavieri MS, Andrews C, Liu X, Van Oyen MP, Kass MA, et al. Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension. JAMA Ophthalmol. 2019 Dec;137(12):1416–23.
Kazemian P, Lavieri MS, Van Oyen MP, Andrews C, Stein JD. Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. Ophthalmology. 2018 Apr;125(4):569–77.
Wang L, Ding L, Liu Z, Sun L, Chen L, Jia R, et al. Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br J Ophthalmol. 2020;104(3):318–23.
Lu J, Fan Z, Zheng C, Feng J, Huang L, Li W, et al. Automated strabismus detection for telemedicine applications. arXiv Prepr arXiv180902940. 2018.
Alaei S, Sadeghi B, Najafi A, Masoudi-Nejad A. LncRNA and mRNA integration network reconstruction reveals novel key regulators in esophageal squamous-cell carcinoma. Genomics. 2019;111(1):76–89.
Chen Z, Fu H, Lo W-L, Chi Z. Strabismus recognition using eye-tracking data and convolutional neural networks. J Healthc Eng. 2018;2018.
Gramatikov BI. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning. Biomed Eng Online. 2017;16(1):1–23.
Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, et al. Keratoconus severity identification using unsupervised machine learning. PLoS One. 2018;13(11):e0205998.
Cao K, Verspoor K, Sahebjada S, Baird PN. Accuracy of Machine Learning Assisted Detection of Keratoconus: A Systematic Review and Meta-Analysis. Vol. 11, Journal of Clinical Medicine . 2022.
Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open. 2019;9(9):e031313.
Lavric A, Valentin P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput Intell Neurosci. 2019;2019:8162567.
Şahlı E, Gündüz K. Thyroid-associated Ophthalmopathy. Turkish J Ophthalmol. 2017 Apr;47(2):94–105.
Motieghader H, Kouhsar M, Najafi A, Sadeghi B, Masoudi-Nejad A. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. Mol Biosyst. 2017 Sep;13(10):2168–80.
Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, et al. The lens opacities classification system III. Arch Ophthalmol. 1993;111(6):831–6.
Mirzaie M, Bahremani E, Taheri N, Khamnian Z, Kharrazi B. Original Article Cataract Grading in Pure Senile Cataracts : Pentacam versus LOCS III. 17(3):337–43.
Li H, Lim JH, Liu J, Wong DWK, Tan NM, Lu S, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2009. p. 3693–6.
Xu Y, Gao X, Lin S, Wong DWK, Liu J, Xu D, et al. Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2013. p. 468–75.
Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 2015;62(11):2693–701.
Wu X, Huang Y, Liu Z, Lai W, Long E, Zhang K, et al. Universal artificial intelligence platform for collaborative management of cataracts. Br J Ophthalmol. 2019;103(11):1553–60.
Dong Y, Zhang Q, Qiao Z, Yang J-J. Classification of cataract fundus image based on deep learning. In: 2017 IEEE international conference on imaging systems and techniques (IST). IEEE; 2017. p. 1–5.
Zhang L, Li J, Han H, Liu B, Yang J, Wang Q. Automatic cataract detection and grading using deep convolutional neural network. In: 2017 IEEE 14th international conference on networking, sensing and control (ICNSC). IEEE; 2017. p. 60–5.
Ran J, Niu K, He Z, Zhang H, Song H. Cataract detection and grading based on combination of deep convolutional neural network and random forests. In: 2018 international conference on network infrastructure and digital content (IC-NIDC). IEEE; 2018. p. 155–9.
Xu X, Zhang L, Li J, Guan Y, Zhang L. A hybrid global-local representation CNN model for automatic cataract grading. IEEE J Biomed Heal informatics. 2019;24(2):556–67.
Elloumi Y. Cataract grading method based on deep convolutional neural networks and stacking ensemble learning. Int J Imaging Syst Technol. 2022 May 1;32(3):798–814.
Zhang H, Niu K, Xiong Y, Yang W, He Z, Song H. Automatic cataract grading methods based on deep learning. Comput Methods Programs Biomed. 2019;182:104978.
Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 2019;9:52–9.
Liu X, Jiang J, Zhang K, Long E, Cui J, Zhu M, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLoS One. 2017;12(3):e0168606.
Clark TY, Clark RA. Atropine 0.01 % eyedrops significantly reduce the progression of childhood myopia. J Ocul Pharmacol Ther. 2015;31(9):541–5.
Han X, Liu C, Chen Y, He M. Myopia prediction: a systematic review. Eye. 2022;36(5):921–9.
Lin H, Long E, Ding X, Diao H, Chen Z, Liu R, et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Med. 2018 Nov;15(11):e1002674.
Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology. 2018 Aug;125(8):1264–72.
Ma Y, Xiong J, Zhu Y, Ge Z, Hua R, Fu M, et al. Development and validation of a deep learning algorithm using fundus photographs to predict 10-year risk of ischemic cardiovascular diseases among Chinese population. medRxiv. 2021.
Olson JA, Sharp PF, Fleming A, Philip S. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes: response to Abramoff et al. Vol. 31, Diabetes care. 2008. p. e63; author reply e64.
Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013 Mar;131(3):351–7.
Solanki K, Ramachandra C, Bhat S, Bhaskaranand M, Nittala MG, Sadda SR. EyeArt: Automated, High-throughput, Image Analysis for Diabetic Retinopathy Screening. Invest Ophthalmol Vis Sci. 2015 Jun 11;56(7):1429.
Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. 2017 Jul;124(7):962–9.
Moral-Pumarega MT, Caserío-Carbonero S, De-La-Cruz-Bértolo J, Tejada-Palacios P, Lora-Pablos D, Pallás-Alonso CR. Pain and stress assessment after retinopathy of prematurity screening examination: indirect ophthalmoscopy versus digital retinal imaging. BMC Pediatr. 2012 Aug;12:132.
Heneghan C, Flynn J, O’Keefe M, Cahill M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal. 2002 Dec;6(4):407–29.
Rabinowitz MP, Grunwald JE, Karp KA, Quinn GE, Ying G-S, Mills MD. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age. Arch Ophthalmol (Chicago, Ill 1960). 2007 Nov;125(11):1495–500.
Yang MB. Re: A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity. Vol. 11, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus. United States; 2007. p. 630–1; author reply 631.
Wilson CM, Cocker KD, Moseley MJ, Paterson C, Clay ST, Schulenburg WE, et al. Computerized analysis of retinal vessel width and tortuosity in premature infants. Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3577–85.
Worrall DE, Wilson CM, Brostow GJ. Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks BT - Deep Learning and Data Labeling for Medical Applications. In: Carneiro G, Mateus D, Peter L, Bradley A, Tavares JMRS, Belagiannis V, et al., editors. Cham: Springer International Publishing; 2016. p. 68–76.
Redd TK, Campbell JP, Brown JM, Kim SJ, Ostmo S, Chan RVP, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology. 2019;103(5):580-4.
Pratap T, Kokil P. Computer-aided diagnosis of cataract using deep transfer learning. Biomed Signal Process Control. 2019;53:101533.
Shah DN, Wilson CM, Ying G, Karp KA, Fielder AR, Ng J, et al. Semiautomated digital image analysis of posterior pole vessels in retinopathy of prematurity. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2009 Oct;13(5):504–6.
Swanson C, Cocker KD, Parker KH, Moseley MJ, Fielder AR. Semiautomated computer analysis of vessel growth in preterm infants without and with ROP. Br J Ophthalmol. 2003 Dec;87(12):1474–7.
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol. 2018 Feb;256(2):259–65.
Matsuba S, Tabuchi H, Ohsugi H, Enno H, Ishitobi N, Masumoto H, et al. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. Int Ophthalmol. 2019 Jun;39(6):1269–75.
Keel S, Li Z, Scheetz J, Robman L, Phung J, Makeyeva G, et al. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Clin Experiment Ophthalmol. 2019 Nov;47(8):1009–18.
Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec;318(22):2211–23.
Pantanowitz L, Dickinson K, Evans AJ, Hassell LA, Henricks WH, Lennerz JK, et al. American Telemedicine Association clinical guidelines for telepathology. J Pathol Inform. 2014;5(1):39.
Gelman R, Jiang L, Du YE, Martinez-Perez ME, Flynn JT, Chiang MF. Plus disease in retinopathy of prematurity: pilot study of computer-based and expert diagnosis. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2007 Dec;11(6):532–40.
Nuzzi R, Marolo P, Nuzzi A. The Hub-and-Spoke Management of Glaucoma. Front Neurosci. 2020;14:180.
Gunasekeran D V, Tham Y-C, Ting DSW, Tan GSW, Wong TY. Digital health during COVID-19: lessons from operationalising new models of care in ophthalmology. Lancet Digit Heal. 2021 Feb;3(2):e124–34.
Pawar N, Maheshwari D, Meenakshi R. COVID-19 myopia, myopia of pandemic: Are we heading towards unpredictable high myopic era? Indian J Ophthalmol. 2022;70(8).
Gunasekeran DV, Tseng RMWW, Tham Y-C, Wong TY. Applications of digital health for public health responses to COVID-19: a systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digit Med. 2021 Feb;4(1):40.
Ittoop SM, SooHoo JR, Seibold LK, Mansouri K, Kahook MY. Systematic Review of Current Devices for 24-h Intraocular Pressure Monitoring. Adv Ther. 2016 Oct;33(10):1679–90.
Wisse RPL, Muijzer MB, Cassano F, Godefrooij DA, Prevoo YFDM, Soeters N. Validation of an Independent Web-Based Tool for Measuring Visual Acuity and Refractive Error (the Manifest versus Online Refractive Evaluation Trial): Prospective Open-Label Noninferiority Clinical Trial. J Med Internet Res. 2019 Nov;21(11):e14808.
Armstrong GW, Lorch AC. A(eye): A Review of Current Applications of Artificial Intelligence and Machine Learning in Ophthalmology. Int Ophthalmol Clin. 2020;60(1):57–71.
Nielsen KB, Lautrup ML, Andersen JKH, Savarimuthu TR, Grauslund J. Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Ophthalmol Retin. 2019 Apr;3(4):294–304.
Islam MM, Yang H-C, Poly TN, Jian W-S, Jack Li Y-C. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Comput Methods Programs Biomed. 2020 Jul;191:105320.
Maddox TM, Rumsfeld JS, Payne PRO. Questions for Artificial Intelligence in Health Care. JAMA. 2019 Jan;321(1):31–2.
Stead WW. Clinical Implications and Challenges of Artificial Intelligence and Deep Learning. Vol. 320, JAMA. United States; 2018. p. 1107–8.
Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks BT - Computer Vision – ECCV 2014. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Cham: Springer International Publishing; 2014. p. 818–33.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2921–9.
Keel S, Wu J, Lee PY, Scheetz J, He M. Visualizing Deep Learning Models for the Detection of Referable Diabetic Retinopathy and Glaucoma. JAMA Ophthalmol. 2019 Mar;137(3):288–92.
Liu TYA, Bressler NM. Controversies in artificial intelligence. Curr Opin Ophthalmol. 2020 Sep;31(5):324–8.
Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of Artificial Intelligence-Based Grading of Diabetic Retinopathy in Primary Care. JAMA Netw open. 2018 Sep;1(5):e182665.
Abbasi K, Razzaghi P, Poso A, Ghanbari-Ara S, Masoudi-Nejad A. Deep Learning in Drug Target Interaction Prediction: Current and Future Perspectives. Curr Med Chem. 2021;28(11):2100–13.
Sullivan HR, Schweikart SJ. Are Current Tort Liability Doctrines Adequate for Addressing Injury Caused by AI? AMA J ethics. 2019 Feb;21(2):E160-166.
- Abstract Viewed: 103 times
- pdf Downloaded: 316 times