Investigation of genes associated with primary open-angle glaucoma (POAG) using expression profile analysis
Journal of Ophthalmic and Optometric Sciences,
Vol. 3 No. 3 (2019),
10 July 2019
,
Page 37-54
https://doi.org/10.22037/joos.v3i3.36537
Abstract
Glaucoma is recognized as one of the most common causes of global blindness observed in various types such as primary open-angle glaucoma (POAG). This condition is characterized by progressive optic neuropathy, leading to damage of optic nerve fibers. Having no symptoms at the beginning, glaucoma results in decreased vision and eventually blindness over several years. Early treatment can prevent the progression of the disease. We performed a study to evaluate differential gene expression in normal control and POAG cases. A total of 179 DEGs were discovered with 60 up-regulated and 119 down-regulated genes. After the selection of DEGs, we constructed the protein-protein interaction network. The result of GO enrichment showed the DEGs involved in antioxidant activity, haptoglobin binding, and oxygen carrier activity. Then Four modules of the primary protein network were obtained using a STRING database, using the K-means method. Next, gene ontology analysis and Kyoto encyclopedia of genes and genomes pathway enrichment were performed for four modules. These genes include TYRP1, FMOD, OGN, PAX6, COL8A2, HLA-DPA1, and HLA-DMB. The results showed that the Selected module is highly related to glaucoma pathogenesis genes. Using integrated bioinformatical analysis, we have identified DEGs candidate genes and pathways involved in glaucoma, which could improve our understanding of the cause and underlying molecular events, and these candidate genes and pathways could be therapeutic targets for glaucoma.
- Glaucoma
- Pathogenesis genes
- Primary open-angle glaucoma
- Protein-protein interaction network
- String
How to Cite
References
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. British journal of ophthalmology. 2006;90(3):262-7.
Rahmani B, Tielsch JM, Katz J, Gottsch J, Quigley H, Javitt J, et al. The cause-specific prevalence of visual impairment in an urban population: the Baltimore Eye Survey. Ophthalmology. 1996;103(11):1721-6.
Weinreb RN, Khaw PT. Primary open-angle glaucoma. The lancet. 2004;363(9422):1711-20.
Talaat K, Fathi OT, Alamoudi SM, Alzahrani MG, Mukhtar RM, Khan MA. Types of Glaucoma and Associated Comorbidities Among Patients at King Abdulaziz Medical City, Jeddah. Cureus. 2021;13(6).
Yasuda M, Tanaka Y, Omodaka K, Nishiguchi KM, Nakamura O, Tsuda S, et al. Transcriptome profiling of the rat retina after optic nerve transection. Scientific reports. 2016;6(1):1-11.
Shi Z, Rudzinski M, Meerovitch K, Lebrun-Julien F, Birman E, Di Polo A, et al. α2-Macroglobulin Is a Mediator of Retinal Ganglion Cell Death in Glaucoma∗. Journal of Biological Chemistry. 2008;283(43):29156-65.
Yan X, Yuan F, Chen X, Dong C. Bioinformatics analysis to identify the differentially expressed genes of glaucoma. Molecular Medicine Reports. 2015;12(4):4829-36.
Mousavian Z, Díaz J, Masoudi-Nejad A. Information theory in systems biology. Part II: protein-protein interaction and signaling networks. Seminars in cell & developmental biology. 2016;51:14-23. doi: 10.1016/J.SEMCDB.2015.12.006.
Mousavian Z, Kavousi K, Masoudi-Nejad A. Information theory in systems biology. Part I: Gene regulatory and metabolic networks. Seminars in Cell and Developmental Biology. 2016;51:3-13. doi: 10.1016/j.semcdb.2015.12.007.
Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, Tabarzad M, Najafi A, Kiani F, et al. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics. 2020;112(3). doi: 10.1016/j.ygeno.2020.02.013.
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently. Scientific Reports 2019 9:1. 2019;9(1):1-14. doi: 10.1038/s41598-019-45814-8.
Kouhsar M, Azimzadeh Jamalkandi S, Moeini A, Masoudi-Nejad A. Detection of novel biomarkers for early detection of Non-Muscle-Invasive Bladder Cancer using Competing Endogenous RNA network analysis. Scientific Reports 2019 9:1. 2019;9(1):1-15. doi: 10.1038/s41598-019-44944-3.
H L, S N, S H, M T-A, F K, M M-J, et al. High-throughput analysis of the interactions between viral proteins and host cell RNAs. Computers in biology and medicine. 2021;135:104611-. doi: 10.1016/J.COMPBIOMED.2021.104611.
Ghasemi M, Seidkhani H, Tamimi F, Rahgozar M, Masoudi-Nejad A. Centrality Measures in Biological Networks. Current Bioinformatics. 2014;9(4):426-41. doi: 10.2174/15748936113086660013.
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Drug databases and their contributions to drug repurposing. Genomics. 2020;112(2):1087-95. doi: 10.1016/J.YGENO.2019.06.021.
Ahmadi H, Ahmadi A, Azimzadeh-Jamalkandi S, Shoorehdeli MA, Salehzadeh-Yazdi A, Bidkhori G, et al. HomoTarget: A new algorithm for prediction of microRNA targets in Homo sapiens. Genomics. 2013;101(2):94-100. doi: 10.1016/J.YGENO.2012.11.005.
Liu Y, Allingham RR, Qin X, Layfield D, Dellinger AE, Gibson J, et al. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma. Investigative ophthalmology & visual science. 2013;54(9):6382-9.
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids research. 1999;27(1):29-34.
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research. 2009;37(suppl_2):W305-W11.
Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077-9.
Ghanem AA, Arafa LF, El-Baz A. Oxidative stress markers in patients with primary open-angle glaucoma. Current eye research. 2010;35(4):295-301.
Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D. Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Investigative ophthalmology & visual science. 2007;48(2):705-14.
Bacon AS, McGill JI, Anderson DF, Baddeley S, Lightman SL, Holgate ST. Adhesion molecules and relationship to leukocyte levels in allergic eye disease. Investigative ophthalmology & visual science. 1998;39(2):322-30.
Feng J, Xu J. Identification of pathogenic genes and transcription factors in glaucoma. Molecular Medicine Reports. 2019;20(1):216-24.
Diskin S, Kumar J, Cao Z, Schuman JS, Gilmartin T, Head SR, et al. Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma. Investigative ophthalmology & visual science. 2006;47(4):1491-9.
Qiu H, Zhu B, Ni S. Identification of genes associated with primary open-angle glaucoma by bioinformatics approach. International Ophthalmology. 2018;38(1):19-28.
Luo D, Liu K, Zhu B, Xu X. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach. Current eye research. 2013;38(7):767-73.
Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, et al. Quantitative trait locus and brain expression of HLA-DPA1 offers evidence of shared immune alterations in psychiatric disorders. Microarrays. 2016;5(1):6.
Salamanca D, Gómez-Chaparro J, Hidalgo A, Labella F. Expresión diferencial del proteoma en humor acuoso de pacientes con y sin glaucoma. Archivos de la Sociedad Española de Oftalmología. 2018;93(4):160-8.
Lu H, Li L, Watson ER, Williams RW, Geisert EE, Jablonski MM, et al. Complex interactions of Tyrp1 in the eye. Molecular vision. 2011;17:2455.
Craig JE, Baird PN, Healey DL, McNaught AI, McCartney PJ, Rait JL, et al. Evidence for genetic heterogeneity within eight glaucoma families, with the GLC1A Gln368STOP mutation being an important phenotypic modifier. Ophthalmology. 2001;108(9):1607-20.
Lynch S, Yanagi G, DelBono E, Wiggs JL. DNA sequence variants in the tyrosinase-related protein 1 (TYRP1) gene are not associated with human pigmentary glaucoma. Mol Vis. 2002;8(16):127-9.
Tzoulaki I, White I, Hanson IM. PAX6 mutations: genotype-phenotype correlations. BMC genetics. 2005;6(1):1-12.
Nishina S, Kohsaka S, Yamaguchi Y, Handa H, Kawakami A, Fujisawa H, et al. PAX6 expression in the developing human eye. British journal of ophthalmology. 1999;83(6):723-7.
Lee HJ, Colby KA, editors. A review of the clinical and genetic aspects of aniridia. Seminars in ophthalmology; 2013: Taylor & Francis.
Wei B, Jin J-P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships. Gene. 2016;582(1):1-13.
Wolner B, Liebmann JM, Sassani JW, Ritch R, Speaker M, Marmor M. Late bleb-related endophthalmitis after trabeculectomy with adjunctive 5-fluorouracil. Ophthalmology. 1991;98(7):1053-60.
Mulder H, Nagorny C, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52(7):1240-9.
Zhao D, Cho J, Kim MH, Friedman DS, Guallar E. Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology. 2015;122(1):72-8.
Ko F, Boland MV, Gupta P, Gadkaree SK, Vitale S, Guallar E, et al. Diabetes, triglyceride levels, and other risk factors for glaucoma in the National Health and Nutrition Examination Survey 2005–2008. Investigative ophthalmology & visual science. 2016;57(4):2152-7.
Boland MV, Quigley HA. Risk factors and open-angle glaucoma: classification and application. Journal of glaucoma. 2007;16(4):406-18.
Pasquale LR, Kang JH, Manson JE, Willett WC, Rosner BA, Hankinson SE. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006;113(7):1081-6.
Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Current diabetes reports. 2016;16(12):1-13.
Li Y, Lin M, Wang K, Zhan Y, Gu W, Gao G, et al. A module of multifactor‐mediated dysfunction guides the molecular typing of coronary heart disease. Molecular Genetics & Genomic Medicine. 2020;8(10):e1415.
Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP. International Union of Basic and Clinical Pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacological reviews. 2011;63(2):269-90.
Zhou Q, Li G, Deng X, He X, Chen L, Wu C, et al. Activated human hydroxy‐carboxylic acid receptor‐3 signals to MAP kinase cascades via the PLC‐dependent PKC and MMP‐mediated EGFR pathways. British journal of pharmacology. 2012;166(6):1756-73.
Song X, Li P, Li Y, Yan X, Yuan L, Zhao C, et al. Strong association of glaucoma with atherosclerosis. Scientific Reports. 2021;11(1):1-8.
Takahashi S. Positive and negative regulators of the metallothionein gene. Molecular Medicine Reports. 2015;12(1):795-9.
Chung RS, Howells C, Eaton ED, Shabala L, Zovo K, Palumaa P, et al. The native copper-and zinc-binding protein metallothionein blocks copper-mediated Aβ aggregation and toxicity in rat cortical neurons. PLoS One. 2010;5(8):e12030.
Miles A, Hawksworth G, Beattie J, Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Critical reviews in biochemistry and molecular biology. 2000;35(1):35-70.
Ling X-B, Wei H-W, Wang J, Kong Y-Q, Wu Y-Y, Guo J-L, et al. Mammalian metallothionein-2A and oxidative stress. International Journal of Molecular Sciences. 2016;17(9):1483.
Ohia SE, Opere CA, LeDay AM. Pharmacological consequences of oxidative stress in ocular tissues. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005;579(1-2):22-36.
Izzotti A, Saccà SC, Cartiglia C, De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. The American journal of medicine. 2003;114(8):638-46.
Izzotti A, Bagnis A, Saccà SC. The role of oxidative stress in glaucoma. Mutation Research/Reviews in Mutation Research. 2006;612(2):105-14.
Hanashima C, Namiki H. Reduced viability of vascular endothelial cells by high concentration of ascorbic acid in vitreous humor. Cell biology international. 1999;23(4):287-98.
- Abstract Viewed: 113 times
- pdf Downloaded: 48 times