The Effect of Contact Lens Induced Myopia and Hyperopia on Retinal Thickness and Volume Measured by Optical Coherence Tomography
Journal of Ophthalmic and Optometric Sciences,
Vol. 1 No. 2 (2017),
12 March 2017
,
Page 1-8
https://doi.org/10.22037/joos.v1i2.16555
Abstract
Purpose:To determine the effect of induced myopia and hyperopia in emmetropic eyes using soft contact lenses on retinal parameters, measured by optical coherence tomography.
Patients and Methods: In this quasi-experimental self-controlled study 57 emmetropic participants, 18 - 42 years of age, were studied. Each subject underwent a complete ophthalmic examinations including, measurement of best corrected visual acuity, intraocular pressure, dry and cycloplegic refractions, and axial length. Optical coherence tomography scans to measure foveal thickness, parafoveal thickness and perifoveal thickness were performed while different refraction powers were induced in each eye by wearing soft contact lenses of five different diopter (- 10.00, - 5.00, plano, + 5.00, + 10.00).
Results: Fifty seven normal emmetropic participants with a mean age of 25.78 ± 6.50 years participated in the present study. Average foveal thickness was 246.02 ± 22.03 μm, 245.47 ± 22.78 μm, 246.47 ± 24.38 μm, 246.42 ± 22.96 μm, and 246.18 ± 22.46 μm in high-induced- myopic (CL: + 10.00 D), mild-induced-myopic (CL: + 5.00 D), emmetropic (CL: Plano), mild-induced-hyperopic (CL: - 5.00 D), and high-induced-hyperopic (CL: - 10.00 D) groups, respectively. Average parafoveal thickness was 329.21 ± 16.31 μm, 329.24 ± 16.36 μm, 328.86 ± 16.46 μm, 328.92 ± 16.57 μm, and 328.80 ± 16.76 μm in high-induced-myopic, mild-induced-myopic, emmetropic, mild-induced-hyperopic, and high-induced-hyperopic groups, respectively. Corresponding numbers for perifoveal thickness was 312.25 ± 14.39 μm, 311.84 ± 14.91 μm, 312.46 ± 16.55 μm, 311.57 ± 14.88 μm, and 311.77 ± 14.96 μm.
Conclusion: Contact lens induced myopia and hyperopia had no significant effect on foveal thickness,parafovealthickness and perifoveal thickness readings in Fourier domain optical coherence tomography.
Keywords: Optical coherence tomography; myopia; hyperopia; retinal parameters; contact lens.
How to Cite
References
Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol. 2006;20(4):215-9.
Salchow DJ, Hwang AM, Li FY, Dziura J. Effect of contact lens power on optical coherence tomography of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2011;52(3):1650-4.
Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve - a review. Clin Exp Ophthalmol. 2009;37(1):90-9.
Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci. 2010;51(8):3913-8.
González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147(6):1067-74.
Tariq YM, Samarawickrama C, Pai A, Burlutsky G, Mitchell P. Impact of ethnicity on the correlation of retinal parameters with axial length. Invest Ophthalmol Vis Sci. 2010;51(10):4977-82.
Pakravan M, Aramesh S, Yazdani S, Yaseri M, Sedigh-Rahimabadi M. Peripapillary retinal nerve fiber layer thickness measurement by three-dimensional optical coherence tomography in a normal population. J Ophthalmic Vis Res. 2009;4(4):220-7.
Giani A, Cigada M, Choudhry N, Deiro AP, Oldani M, Pellegrini M, et al. Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol. 2010;150(6):815-24.
Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(2):1098-102.
Stein DM, Wollstein G, Ishikawa H, Hertzmark E, Noecker RJ, Schuman JS. Effect of corneal drying on optical coherence tomography. Ophthalmology. 2006;113(6):985-91.
Lee J, Kim NR, Kim H, Han J, Lee ES, Seong GJ, Kim CY. Negative refraction power causes underestimation of peripapillary retinal nerve fibre layer thickness in spectral-domain optical coherence tomography. Br J Ophthalmol. 2011;95(9):1284-9.
Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM. Magnification characteristics of the Optical Coherence Tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt. 2008;28(1):21-8.
Quigley MG, Dube P. A new fundus camera technique to help calculate eye-camera magnification: a rapid means to measure disc size. Arch Ophthalmol. 2003;121(5):707-9.
Mrugacz M, Bakunowicz-Lazarczyk A, Sredzinska-Kita D. Use of optical coherence tomography in myopia. J Pediatr Ophthalmol Strabismus. 2004;41(3):159-62.
Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci. 2005;46(3):974-8.
Sato A, Fukui E, Ohta K. Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol. 2010;94(12):1624-8.
Wu PC, Chen YJ, Chen CH, Chen YH, Shin SJ, Yang HJ, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond). 2008;22(4):551-5.
Madrid-Costa D, Isla-Paradelo L, García-Lázaro S, Albarrán-Diego C, Ruiz-Alcocer J. Effect of multizone refractive multifocal contact lenses on the Cirrus HD OCT retinal measurements. Clin Exp Optom. 2013;96(1):53-7.
Cheng SC, Lam CS, Yap MK. Retinal thickness in myopic and non-myopic eyes. Ophthalmic Physiol Opt. 2010;30(6):776-84.
Feng L, Burns SA, Shao L, Yang Y. Retinal measurements using time domain OCT imaging before and after myopic Lasik. Ophthalmic Physiol Opt. 2012;32(3):222-7.
Yang B, Wang Z, Huang G, Liu X, Ling Y, Zheng X. Transient macular edema after laser in-situ keratomileusis. Yan Ke Xue Bao. 2003;19(1):20-4.
Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23(2):177-82.
Göbel W, Hartmann F, Haigis W. Determination of retinal thickness in relation to the age and axial length using optical coherence tomography. Ophthalmologe. 2001;98(2):157-62. (Article in German)
Wolsley CJ, Saunders KJ, Silvestri G, Anderson RS. Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity. Vision Res. 2008;48(14):1554-61.
Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, Li EY, Lai RY, Leung CK. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48(1):376-82.
Sharma N, Sony P, Gupta A, Vajpayee RB. Effect of laser in situ keratomileusis and laser-assisted subepithelial keratectomy on retinal nerve fiber layer thickness. J Cataract Refract Surg. 2006;32(3):446-50.
Dementyev DD, Kourenkov VV, Rodin AS, Fadeykina TL, Diaz Martines TE. Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography. J Refract Surg. 2005;21(5 Suppl):S623-7.
- Abstract Viewed: 565 times
- PDF Downloaded: 144 times