The Frequency of Integrons and OXA Genes in Uropathogenic Isolates of Klebsiella pneumoniae Transmission of antimicrobial resistance in Klebsiella pneumoniae
Archives of Medical Laboratory Sciences,
Vol. 7 (2021),
,
Page 1-8 (e23)
https://doi.org/10.22037/amls.v7.35178
Abstract
Background and Aim: One of the most critical concerns in Klebsiella pneumoniae isolated from nosocomial infections is antibiotic resistance due to transferable resistance genes. This study aims to investigate the relationship and role of integrons in the transport of OXA-type genes in the production of carbapenem-resistant isolates.
Methods: In this study, 270 isolates of K. pneumoniae were isolated from patients with urinary tract infection symptoms hospitalized at Milad hospital of Tehran during 2017-2018. The biochemical methods confirmed K. pneumoniae isolates. Also, antimicrobial susceptibility testing was performed using an E-test method. Carbapenem-resistant isolates were confirmed using an automated antimicrobial susceptibility testing system (Phenix BD USA). The presence of OXA genes, integron, and its class were determined by PCR method.
Results: According to our findings, the most effective antibiotics against uropathogenic K. pneumoniae isolates were piperacillin-tazobactam and meropenem, respectively. Out of the 270 isolates, 27 (10%) were detected as carbapenem-resistant K. pneumoniae isolates. Moreover, 47.2%, 40.1%, 39.2%, and 36.4% of K. pneumoniae isolates were resistant to ceftriaxone, ceftazidime, trimethoprim-sulfamethoxazole, and amoxicillin/clavulanate, respectively. A significant proportion of isolates had class I integron. Meaningful differences in OXA-51, 58, and 24 genes were found in carbapenem-resistant and carbapenem-susceptible K. pneumoniae isolates. No significant relationship was observed between class 1 and 2 integrons and other studied gene determinants of antimicrobial resistance.
Conclusion: According to the observed results, OXA-23, OXA-24, OXA-58, and OXA-51-like groups were the most prevalent genes in carbapenem-resistant K. pneumoniae isolates, respectively. Also, 97.9% of carbapenem-susceptible K. pneumoniae isolates had class 1 integron.
*Corresponding Author: Dr. Mohammad Rahbar; Email: rahbar@health.gov.ir
ORCID: https://orcid.org/0000-0003-2292-3175
Please cite this article as: Pourbaghi E, Hosseini Doust R, Rahbar M, Rahnamaye Farzami M. The Frequency of Integrons and OXA Genes in Uropathogenic Isolates of Klebsiella pneumoniae. Arch Med Lab Sci. 2021;7:1-8 (e23). https://doi.org/10.22037/amls.v7.35178
- Klebsiella pneumoniae
- Urinary Tract Infection
- Integron
- Antimicrobial Susceptibility
- Carbapenem
How to Cite
References
Spagnolo AM, Orlando P, Panatto D, Perdelli F, Cristina ML. An overview of carbapenem-resistant Klebsiella pneumoniae: epidemiology and control measures. Reviews in Medical Microbiology. 2014;25(1):7-14.
Bahramian A, Shariati A, Azimi T, Sharahi JY, Bostanghadiri N, Gachkar L, et al. First report of New Delhi metallo-β-lactamase-6 (NDM-6) among Klebsiella pneumoniae ST147 strains isolated from dialysis patients in Iran. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2019;69:142-5.
Al-Badr A, Al-Shaikh G. Recurrent Urinary Tract Infections Management in Women: A review. Sultan Qaboos Univ Med J. 2013;13:359-67.
Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future microbiology. 2012;7(8):991-1002.
Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in cellular and infection microbiology. 2018;8:4.
Dortet L, Poirel L, Al Yaqoubi F, Nordmann P. NDM-1, OXA-48 and OXA-181 carbapenemase-producing Enterobacteriaceae in Sultanate of Oman. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18(5):E144-8.
Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. Journal of chemotherapy (Florence, Italy). 2017;29(sup1):2-9.
Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrobial agents and chemotherapy. 2004;48(1):1-14.
Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Current opinion in microbiology. 2006;9(5):466-75.
Morosini MI, García-Castillo M, Coque TM, Valverde A, Novais A, Loza E, et al. Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrobial agents and chemotherapy. 2006;50(8):2695-9.
Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. The Journal of antimicrobial chemotherapy. 2005;56(3):463-9.
Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrobial agents and chemotherapy. 2006;50(4):1178-82.
Taherikalani M, Maleki A, Sadeghifard N, Mohammadzadeh D, Soroush S, Asadollahi P, et al. Dissemination of class 1, 2 and 3 integrons among different multidrug resistant isolates of Acinetobacter baumannii in Tehran hospitals, Iran. Polish journal of microbiology. 2011;60(2):169-74.
Kargar M, Mohammadalipour Z, Doosti A, Lorzadeh S, Japoni-Nejad A. High Prevalence of Class 1 to 3 Integrons Among Multidrug-Resistant Diarrheagenic Escherichia coli in Southwest of Iran. Osong public health and research perspectives. 2014;5(4):193-8.
Connie R. Mahon DCL GM. Textbook of diagnostic microbiology-E-Book: Elsevier Health Sciences. 2014:450-1.
Weinstein MP. Performance Standards for Antimicrobial Susceptibility Testing. Thirtieth, editor: CLSI; 2019. 332 p.
Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN. Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. Journal of laboratory physicians. 2017;9(4):303-7.
Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. International journal of clinical and experimental medicine. 2015;8(8):13859-63.
Machado E, Cantón R, Baquero F, Galán JC, Rollán A, Peixe L, et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrobial agents and chemotherapy. 2005;49(5):1823-9.
Karczmarczyk M, Abbott Y, Walsh C, Leonard N, Fanning S. Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Applied and environmental microbiology. 2011;77(20):7104-12.
Moini AS, Soltani B, Taghavi Ardakani A, Moravveji A, Erami M, Haji Rezaei M, et al. Multidrug-Resistant Escherichia coli and Klebsiella pneumoniae Isolated From Patients in Kashan, Iran. Jundishapur journal of microbiology. 2015;8(10):e27517.
Lina T, Rahman S, Gomes D. Multiple-Antibiotic Resistance Mediated by Plasmids and Integrons in Uropathogenic Escherichia coli and Klebsiella pneumoniae. Banglad J Microbiol. 2007;24:19-23.
Evans BA, Amyes SG. OXA β-lactamases. Clinical microbiology reviews. 2014;27(2):241-63.
Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int J Clin Exp Med. 2015;8:13859-63.
Alvargonzalez JJC, Hernando AV, Martín MDR, Casas CM, Iglesias JO, Marín MFB, et al. Sequential outbreaks in a Spanish hospital caused by multiresistant OXA-58-producing Acinetobacter baumannii ST92. Journal of medical microbiology. 2014;63(Pt 8):1093-8.
Budak S, Aktaş Z, Oncul O, Acar A, Ozyurt M, Turhan V, et al. Detection of OXA-51 Carbapenemase Gene in Klebsiella pneumoniae: A Case Report and a New Dimension on Carbapenemase Resistance. Mol Genet Med. 2013(7):17-47.
Babakhani S, Shokri S, Baharvand M. Antibiotic resistance pattern of Klebsiella pneumoniae isolated from nosocomial infections in Aleshtar hospital, Lorestan province. Report of Health Care. 2015;1(2):55-9.
El-Badawy MF, El-Far SW, Althobaiti SS, Abou-Elazm FI, Shohayeb MM. The First Egyptian Report Showing the Co-Existence of bla (NDM-25), bla (OXA-23), bla (OXA-181), and bla (GES-1) Among Carbapenem-Resistant K. pneumoniae Clinical Isolates Genotyped by BOX-PCR. Infection and drug resistance. 2020;13:1237-50.
Derakhshan S NPS, Fallah F, Bakhshi B, Rahbar M, et al. Detection of Class 1, 2, and 3 Integrons Among Klebsiella pneumoniae Isolated from Children in Tehran Hospitals. Arch Pediatr Infect Dis.2(1):164-8.
Derakhshan S, Najar Peerayeh S, Bakhshi B. Association Between Presence of Virulence Genes and Antibiotic Resistance in Clinical Klebsiella Pneumoniae Isolates. Laboratory Medicine. 2016;47(4):306-11.
Malek Jamshidi MR, Zandi H, Eftekhar F. Correlation of quinolone-resistance, qnr genes and integron carriage in multidrug-resistant community isolates of Klebsiella spp. Iranian journal of basic medical sciences. 2019;22(12):1387-91.
Abdolaziz R-L, Hajar M-B, Mohammad A, Rahim N, Parviz O. Distribution of Class I Integron among Isolates of Acinetobacter baumannii Recoverd from Burn Patients. Journal of Medical Bacteriology. 2015;(2(1-2
Sedighi M, Halajzadeh M, Ramazanzadeh R, Amirmozafari N, Heidary M, Pirouzi S. Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. Revista da Sociedade Brasileira de Medicina Tropical. 2017;50(3):321-8.
- Abstract Viewed: 164 times
- PDF Downloaded: 69 times