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Abstract 

 

Background and Objective: Pullulan is a microbial exopolysaccharide with wide uses in 

various industries. The aim of this study was to investigate pullulan production from agro-

industrial wastes and study of pH, molasses concentration and corn steep liquor concentration 

as independent variables and yield of pullulan as response.  

Material and Methods: Briefly, 5% (v v-1) of the inoculation media (yeast extract 3 g, malt 

extract 3 g, peptone 5 g and sucrose 10 g per liter of distilled water), including Aureobasidium 

pullulans were added into media, containing 100 ml of molasses (100, 150 and 200 g l-1) and 

various corn steep liquor concentrations (20, 40 and 60 ml l-1) at adjusted pH (4.5, 5.5 and 6.5). 

After extraction and separation of the biomass using centrifuge, two folds of the supernatant 

volume of cold ethanol were added to the samples and stored at 4 °C for 24 h. After centrifuging, 

pullulan was dried and analyzed using Fourier transform infrared spectroscopy, X-ray 

diffraction, thermogravimetric analysis and rheological tests. 

Results and Conclusion: Findings revealed that the maximum production yield (18.29 g l- 1 

±0.10) was achieved under optimum fermentation conditions (pH of 5.3, molasses concen-

tration of 165 g l-1 and corn steep liquor concentration of 43 ml l-1). Then, physiochemical and 

thermal properties of the pullulan under the highlighted conditions were investigated. Pullulan 

included 78.8% solubility with no hygroscopicity. Furthermore, structural analysis using Fou-

rier transform infrared and X-ray diffraction verified presence of pullulan with an amorphous 

structure in the supernatant. The exopolysaccharide included acceptable thermal stability and 

gel-like behavior; in which, the elastic component was predominant based on the results of 

thermogravimetric analysis and rheological properties, respectively. 
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1. Introduction 

Pullulan, as an exopolysaccharide produced by Aureoba-

sidium (A.) pullulans, is composed of repeating maltotriose 

subunits (structured with α-D-glucan units) linked by α-1,4-

glycosidic bonds [1-3]. Furthermore, the linear structure is 

interconnected via α-1,6-glycosidic linkages [2,4,5]. This 

water-soluble exopolysaccharide forms flexible, edible, 

transparent biodegradable films and can be used for coating 

purposes. Other specifications include oil resistant and imp-

ermeability to oxygen, which are accounted as important 

properties for the packing industries [1,6,7]. Additionally, 

pullulan can be used as starch replacer in low-calorie food 

formulations, texturizing material in cosmetic emulsions 

and material for drug delivery systems [6-9]. Despite these 

uses, pullulan production is limited due to costly substrates 

and media [8,10]. To solve this problem, studies have 

focused on using agricultural wastes as inexpensive 

substrates for the production of this product. Moreover, 

results have shown that these waste included acceptable 

production yields. Biotechnolgists are intersted in 

production of valuable products from biowastes using mic-

roorganisms [11,12]. For example, Goksungur et al. [6] 

produced pullulan from hydrolyzed potato starch wastes. In 

another study, An et al. [4] studied the pullulan production 

using mixtures of potato starch hydrolysates and sucrose 

and reported that production efficiency of pullulan in media 

was favorable. It is noteworthy that production of pullulan 
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from agrowastes is a biorefinery process; in which, econo-

mically valuable materials are produced through the fermen-

tation process in addition to decreasing environmental 

pollution [6]. Therefore, finding novel low-cost sources for 

the production of this exopolysaccharide seems attractive.  

Molasses derived from beetroot or sugarcane refining 

processes (sucrose purification) can significantly be consi-

dered for microbial carbon source due to its high sucrose 

contents, substrates with no pre-treatment needs prior to the 

fermentation [13,14]. However, molassess includes no 

sufficient nitrogen contents and; therefore, needs nitrogen 

sources. Corn steep liquor (CSL) is generated by associated 

amylase enzymes in starch processing factories. It is a 

nitrogen nutrient that can be incorporated into media and 

support production of pullulan [15]. Therefore, the aim of 

this study was to optimize pullulan production conditions 

from a novel inexpensive source and to investigate physic-

chemical, structural, thermal and rheological properties of 

the product. Box-Behnken design with three independent 

variables of pH, molasses concen-tration and CSL concen-

tration and a rsponse of pullulan production yield were used.  

2. Materials and Methods 

2.1 Materials 

Aureobasidium pullulans (KY767024) was provided by 

Department of Food Science and Engineering, University of 

Tehran, Tehran, Iran. Beet molasses was purchased from the 

local sugar refinery (Buin Zahra, Qazvin, Iran). The CSL 

was supplied by Glucosan, Qazvin, Iran. Potato dextrose 

agar (PDA), malt extract, yeast extract, sulfuric acid and 

sodium hydroxide were purchased from Merck Chemical, 

Darmstadt, Germany and peptone from Sigma Chemical, St. 

Louis, MO, USA. All chemicals included analytical grades. 

2.2 Chemical analysis of molasses and corn steep liquor 

Beet molasses and CSL were analyzed for their moisture, 

nitrogen, sugar and ash contents (Table 1) based on methods 

described by Lee et al. [16] and Horwitz [17]. 

2.3 Pretreatment of molasses and addition of corn steep 

liquor  

To decrease harmful compounds (coloring substances 

and heavy metals as growth inhibitors during fermentation) 

for the microorganisms, pretreatment of molasses was 

carried out based on a method by Lazaridou et al. [18] with 

mild modification. Molasses solution was adjusted to pH 3 

with H2SO4 (2 N) and set for 24 h at ambient temperature. 

Then, solution was centrifuged at 5000 ×g for 15 min. To 

eliminate color of the solution, supernatant was treated three 

times with activated carbon (3% w v-1) and stirring for 1 h 

at 25 °C) and then filtered through Whatman No. 1 filters. 

Subsequently, CSL was added to molasses solution and the 

medium was adjusted to a certain pH (with 1 N NaOH) as a 

favorable environment for the microorganism growth.  

 

Table 1. Chemical compounds of the agricultural wastes of 

molasses and corn steep liquor 

Chemical compounds (%)  Molasses Corn steep liquor 

Moisture  24 33.4 

Protein 6.5 40 

Sugar 54 4.5 

Ash 9.7 17 

2.4 Inoculum preparation  

To prepare inoculum media, cultivated A. pullulans 

colonies were transferred into 100 ml of the sterilized 

inoculum liquid containing 3 g of yeast extract, 3 g of malt 

extract, 5 g of peptone and 10 g of sucrose per liter of 

distilled water and poured into 250-ml flasks with pH 

adjusted to 5.5. Flasks were transferred to a shaking 

incubator (Stuart Orbital Incubator S150, Staffordshire, 

UK) at 25 °C and sub-cultured every three days.  

2.5 Fermentation and pullulan production  

Briefly, 5% (v v-1) of the inoculation media were added 

into a media containing 100 ml of molasses and CSL with 

adjusted pH based on Box-Behnken design. Mixture was 

transferred to shaking incubator (28 °C, 180 rpm) and stored 

for 4 d under constant conditions.  

2.6 Pullulan extraction 

After fermentation time, culture was centrifuged at 15000 

×g for 15 min. After separation of biomass from the 

supernatant, two folds of the supernatant volume of cold 

ethanol were added to the samples and stored at 4 °C for 24 

h. To separate polysaccharides, samples were centrifuged at 

15000 ×g for 15 min. Pullulan was dried at 50 °C until 

reaching a constant weight [19]. The pullulan production 

yield was reported as gram of the produced pullulan per liter 

of culture media (g l-1).  

2.7 Solubility of the produced pullulan 

Dried pullulan (0.1 g) was suspended in 10 ml of distilled 

water and incubated at ambient temperature by constant 

agitation (100 rpm) for 90 min. Then, mixture was 

centrifuged at 7000 ×g for 15 min. Supernatant was dried at 

55 °C using oven until a constant weight is achieved. The 

percentage of solubility was calculated using Eq. 1:  

Solubility (%) = (WS Wi⁄ ) × 100                                (Eq. 1) 

Where, Wi was the initial weight of pullulan powder and 

Ws was the weight of dried supernatant.  

2.8 Hygroscopicity 

Pullulan powder sample (~1 g) was stored in a container 

with saturated NaCl solution (75.29% RH 25 °C). After one 

week sample was weighed and hygroscopicity was calcu-

lated as Eq. 2 [20]:  

Hygroscopicity (%) = [(w1 − w0) w0⁄ ] × 100     (Eq. 2) 
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Where w0 was the initial weight of powder and w1 was 

the weight of powder after moisture adsorbing under humid 

air environment.  

2.9 Fourier transform infrared spectroscopy analysis 

The FTIR spectrometer (Perkin Elmer MA USA) was 

used to assess pullulan structure using KBr disk method in 

the range of 4000-500 cm-1. Results were compared to those 

of commercial pullulan to verify presence of the pullulan 

structure.  

2.10 Crystallinity analysis by X-ray diffraction  

Briefly, X-ray diffractometer (Philips, Amsterdam, 

Netherland) with diffraction angle (2θ) of 5-80°, step size 

of 0.02° (2θ) and time per step of 1s/step was used to study 

crystallinity of the pullulan. 

2.11  Thermo-gravimetric analysis of the produced 

pullulan  

Briefly, Thermogravimetric analyzer analyzer (TA 

Q600, USA) with a heating range of 10-700 °C and a 

ramping rate of 10 °C min-1 under argon flow of 100 ml min-

1 was used to analyze thermal properties of the pullulan [8]. 

2.12 Rheological behavior of the pullulan solution  

Viscoelastic properties of the pullulan solution (2%  

w v-1) were assessed using rotational rheometer (MCR301, 

Anton Paar, Austria). To analyze the linear viscoelastic 

region, oscillation strain sweep was carried out at a constant 

oscillation frequency of 1 Hz prior to dynamic experiments 

and then the storage modulus (𝐺′) and loss modulus (𝐺′′) 

were calculated using oscillatory frequency sweep test at 

frequencies of 0.1-10 Hz, strain value of 0.01% (within the 

linear viscoelastic region) and temperature of 25 °C. The 𝐺′ 

and 𝐺′′, which represented viscoelastic rheological behave-

iors, could be expressed based on the Eqs. 3 and 4:  

G′ = σ° γ°⁄ Cos (δ)                                                               Eq. 3 

G′′ = σ° γ°⁄ Sin (δ)                                                               Eq. 4 

The loss tangent was calculated based on the Eq. 5:  

tan 𝛿 = 𝐺′′ 𝐺′⁄                                                                      Eq. 5 

The complex modulus was quantitated by the Eq. 6:  

𝐺∗ = 𝜎° 𝛾°⁄                                                                              Eq. 6 

The complex viscosity was calculated using ratio of the 

complex modulus to frequency according to Eq. 7:  

𝜂∗ = 𝐺∗ 𝜔⁄                                                                              Eq. 7 

2.13 Statistical analysis  

In this study, Box-Behnken design with three variables 

of pH (4.5, 5.5 and 6.5), molasses concentration (MC) (100, 

150 and 200 g l-1) and CSL concentration (20, 40, and 60 ml 

l-1) was used to achieve the maximum production yield of 

pullulan (response) (Table 2). Computations and graphics 

were reated using Design Expert 11 and Excel 2010.  

3. Results and Discussion 

3.1 Chemical composition of molasses and corn steep 

liquor  

In the present study, pullulan production yield was 

optimized using response surface methodology procedure. 

Molasses and CSL were incorporated into the culture media 

as carbon and nitrogen sources, respectively. Specifications 

of the industrial wastes are presented in Table 1. Molasses 

and CSL included 48% sugar and 38% protein, respectively, 

as the dominant sections of the highlighted materials. 

Results were similar to results from other studies [14,15] 

3.2 Pullulan production and statistical analysis  

Box-Behnken design was used to optimize pullulan 

production yield considering three parameters of pH and 

molasses and CSL concentrations, as independent variables, 

at three levels with three replications at center point (for 

pure internal errors) (Table 2). As seen in the table, 

production yield varied from 2.30 (Run 2) to 18.30 g l-1 (Run 

14 as center point). Results of analysis of variance are 

shown in Table 3.  

Fit summary results suggested that the quadratic model 

could be the most confidently for the calculation of the 

pullulan production yield. The quadratic polynomial 

regression was well-fitted to the experimental data since the 

lack-of-fit was insignificant (p > 0.05) and the respective 

regression model was extremely significant (p < 0.01) [1,6]. 

Furthermore, effects of linear and quadratic terms of pH and 

molasses and CSL concentrations on pullulan yield were 

significant (p < 0.01) while interactions term effects were 

less significant on pullulan yield (p < 0.05). Ass reported for 

the regression model, these data could be well linked to the 

high calculated coefficient (R2 = ~0.99) [8]. Thereby, high 

significance of the polynomial quadratic model was 

validated and sufficient to predict variable effects on the 

response [21]. The coded quadratic equation was as Eq. 8:  

Y (g l−1) = 18.10 − 1.66A + 2.97B + 0.68C + 0.47AB −

0.40AC + 0.37BC − 6.05A2 − 4.62B2 − 2.35C2 Eq.8 

Where, Y was the calculated pullulan production yield 

and A, B and C were the terms contributed to the linear 

effects of pH and molasses and CSL concentrations, 

respectively. AB, AC and BC were expressed as the terms 

showing interaction effects. A2, B2 and C2 were linked to the 

terms showing quadratic effects on pullulan production 

yield. 
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Table 2. Levels of the variables (pH and carbon and nitrogen sources) and values from the calculated and predicted pullulan 

yields (g l-1) 

Samples pH Molasses 

concentration 

(g l-1) 

Corn steep liquor 

concentration 

(ml l-1) 

Experimental pullulan yield 

(g l-1) 

Predicted pullulan yield 

(g l-1) 

1 4.5 (-1) 100 (-1) 40 (0) 6.40 6.50 

2 6.5 (+1) 100 (-1) 40 (0) 2.30 2.30 

3 4.5 (-1) 200 (+1) 40 (0) 11.60 11.50 

4 6.5 (+1) 200 (+1) 40 (0) 9.40 9.20 

5 4.5 (-1) 150 (0) 20 (-1) 10.30 10.20 

6 6.5 (+1) 150 (0) 20 (-1) 7.60 7.70 

7 4.5 (-1) 150 (0) 60 (+1) 12.60 12.40 

8 6.5 (+1) 150 (0) 60 (+1) 8.30 8.30 

9 5.5 (0) 100 (-1) 20 (-1) 8.00 7.80 

10 5.5 (0) 200 (+1) 20 (-1) 13.00 13.00 

11 5.5 (0) 100 (-1) 60 (+1) 8.50 8.40 

12 5.5 (0) 200 (+1) 60 (+1) 15.00 15.10 

13 5.5 (0) 150 (0) 40 (0) 18.00 18.10 

14 5.5 (0) 150 (0) 40 (0) 18.30 18.10 

15 5.5 (0) 150 (0) 40 (0) 18.00 18.10 

 

Table 3. Analysis of variance for the quadratic model of pullulan yield 

Source Sum of squares  df Mean square F-value p-value 

Model 307.62 9 34.18 735.07 <0.0001 

A-pH 22.11 1 22.11 475.51 <0.0001 

B-Molasses concentration 70.80 1 70.80 1522.69 <0.0001 

C-Corn steep liquor concentration 3.78 1 3.78 81.32 0.0003 

AB 0.9025 1 0.9025 19.41 0.0070 

AC 0.6400 1 0.6400 13.76 0.0139 

BC 0.5625 1 0.5625 12.10 0.0177 

A2 135.15 1 135.15 2906.40 <0.0001 

B2 78.98 1 78.98 1698.51 <0.0001 

C2 20.39 1 20.39 438.51 <0.0001 

Residual 0.2325 5 0.0465   

Lack of fit 0.1725 3 0.0575 1.92 0.3609 

Pure error 0.0600 2 0.0300   

Total  307.86 14    

R2   0.9992   

Adjusted R2   0.9979   

Predicted R2   0.9906   

C.V.%   1.93   

 

3.3 Effects of media conditions on pullulan production  

3.3.1 pH effects  

As seen in Fig. 1, pH was an effective factor for the 

pullulan production by A. pullulans. Figure showed that the 

production yield first increased with increases in pH from 

4.5 to 5.5 and then decreased. These observations are 

strongly linked to optimum conditions of the strain [22,23]. 

Therefore, it can be predicted that the best pH might vary 

for various strains in various media [7,24]. For example, Wu 

et al. [25] reported that the best pH for the pullulan produ-

ction by A. pullulans JN207852 from synthetic medium was 

6.0 while Sugumaran et al. [8] stated that this parameter for 

the pullulan production from Asian palm kernel by A. 

pullulans MTCC 2670 was 6.6 

 

3.3.2 Molasses concentration effects  

Molasses was incorporated into the culture media as a 

sole carbon source. Molasses is a by-product, which is 

achieved during the sugar production. Majorly, molasses is 

composed of sucrose (approximately 55% of total solid 

content) and other nitrogen compounds are the residual 

ingredients. Sucrose is degraded by microbial enzymes and 

consequently bioconversion of simple sugars (fructose and 

glucose) occurs [26,27]. Based on Fig. 1, the modest qua-

ntities of carbon sources in media resulted in higher pullulan 

production yields. Indeed, higher molasses concentrations 

could concentrate media and create viscos fluids in 

submerging culture media. In this state, oxygen transition 

could be limited and subsequent cell metabolisms (growth 

and activity) might be disturbed [18]. Hence, it was 

concluded that carbon substrates should exist in sufficient 

quantities, reaching by optimization processes. The maxi-
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mum pullulan production yield was achieved when the 

molasses concentration was ~150 g l-1 (sugar concentration 

of ~81 g l-1 based on Table 1). Lazaridou et al. [18] reported 

that the maximum pullulan production yield from beet 

molasses using A. pullulans and stirred tank reactor was 

achieved at a sugar concentration of 100 g l-1. Researchers 

stated that the maximum pullulan yield from beet molasses 

in batch culture was achieved at a sugar concentration of 50 

g l-1 [28]. This difference in quantities of optimal molasses 

can be linked to difference in fermentation conditions as 

well as media compounds such as nitrogen sources.  

3.3.3 Corn steep liquor concentration effects 

Nitrogen source is an important factor in pullulan 

synthesis and several studies have shown that excessive 

increases in nitrogen source can decrease production yields 

[23,29]. As illustrated in Fig. 1, increases in CLS concentra-

tion to 40 g l-1 included direct relationships with the 

response. However, further increases led to decreases in 

efficiency. Generally, large increases in nitrogen source lead 

to increases in biomass concentration and simultaneously 

decreases in product concentration [7]. These findings were 

similar to those reported by Singh et al. [30] and Mehta et 

al. [31].  

3.4 Optimization process  

In this study, response surface methodology was used to 

optimize pullulan production conditions to reach the 

maximum yield. Optimization was accompanied with the 

validation study. The optimum point (pH of 5.3, MC of 165 

g l-1 and CSL concentration of 43 ml l-1) was validated with 

experimental calculation of the respective point with three 

replications and its comparison with the predicted point. 

Results of t-test showed that the experimental value (18.29 

g l-1 ±1.0) included no significant differences with the 

predicted one (18.75 g l-1) (p < 0.05). 

3.5 Pullulan powder properties  

In this step, solubility and hygroscopicity of the 

experimental pullulan under optimum production condi-

tions were assessed. In general, solubility of the biopolymer 

compounds depends on various parameters such as media 

acidity, pH, ionic strength, temperature and inter and 

intramolecular interactions [32]. The last parameter is 

important since further interactions of the biopolymer 

chains with water molecules can increase solubility due to 

increases in hydrogen bond formation. Thus, further 

hydrogen bond formation with water molecules rather than 

biopolymer-biopolymer bonds increases solubility. In the 

present study, solubility included 78.8%, which was signi-

ficantly lower than that of the commercial pullulan (100% 

solubility). The difference could be attributed to drying 

methods. Indeed, commercial pullulans are mostly dried 

using lyophilizing procedures while the experimental 

pullulan was oven-dried. Freeze-drying due to sublimation 

process generates porous structures and, thereby, water 

conveniently penetrates powder particles [32]. Results of 

hygroscopicity showed no weight gain after a week storage 

in NaCl saturated solution. These findings were similar to 

findings by previous studies [33,34].  
 

 

Figure 1. Three-dimensional surface plots of pullulan production yield affected by three independent variables of pH and 

molasses and corn steep liquor concentrations. MC: molasses concentration; CSLC: corn steep liquor concentration 
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Figure 2. Fourier transform infrared spectra of the commercial and experimental pullulan 

 

3.6 Structural analysis using Fourier transform infrared 

spectroscopy 

In this study, FTIR spectroscopy was used to study 

chemical structures of the pullulan. Figure 2 shows FTIR 

spectra of the experimental pullulan under optimum 

conditions and the commercial pullulan. Each of detected 

peaks could be linked to specific functional groups. As 

shown in figure, a broadband was detected in range of 3300-

3500 cm-1, which was attributed to hydroxyl (-OH) 

stretching groups abundantly found in polysaccharide 

structures. The stretching peak at 2800-3000 cm-1 was asso-

ciated to symmetric and asymmetric -CH vibrations (methyl 

groups in alkane structures) [35,36]. The peak at 1627 cm-1 

could be linked to O-C-O group and the peak at 1433 cm-1 

to C-O-H group. Detected sharp stretch peaks at 1193 and 

1137 cm-1 were linked to C-O-C and C-O groups, respect-

tively. Peaks at 1000-1100 cm-1 were derived from 

glycosidic linkages. It has been found that peaks in range of 

800-1200 cm-1 are referred to as fingerprint region, which is 

unique for each compound. As stated for the pullulan 

structure, α-D-1,4-glucopyranoside and α-D-1,6-gluco-

pyranoside are the main bonds, which include two peaks of 

754 and 1100 cm-1, respectively. Results showed that the 

supernatant was rich in linear glucan with maltotriose 

repeating units connected by (1→6) linkages. Data were 

similar to data reports by Hamidi et al. [23] and Wang et al. 

[5] for pullulans from synthetic media and rice hull 

hydrolysate, respectively. 

3.7 X-ray diffraction analysis 

Patterns of the produced pullulan are represented in Fig. 

3. Generally, presence of sharp signals in XRD pattern 

reflects the crystalline structure of a polymer.  

In contrast, their absence shows the amorphous structure 

of a polymer [24]. Thus, the achieved sample included an 

amorphous structure. Similar results were reported in 

previous studies by other researchers [8,37,24]. 

Figure 3. X-ray diffraction patterns of the experimental 

pullulan under optimum conditions 

3.8 Thermogravimetric analysis  

Thermostability is an important property in industrial 

pullulan scales. Thermal stability of the produced pullulan 

is illustrated in Fig. 4. As it can be observed in the figure, 

thermal decomposition of the pullulan initiated at 245.59 

°C, demonstrating that the produced pullulan included an 

acceptable thermal stability according to the previously 

reported data by other researchers [2,8,23,38].  
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Figure 4. Thermogravimetric analysis of the extracted 

pullulan at the optimum point 

3.9 Rheological attributes  

   Rheological properties of the pullulan solution (2% w v-1) 

were investigated to assess viscoelastic characteristics of the 

produced exopolysaccharides. Hence, oscillatory strain 

sweep was carried out to calculate the viscoelastic region 

and then oscillatory frequency sweep test was carried out to 

assess storage, loss modulus values and complex viscosity 

[39]. Results are presented in Figs. 5 and 6. At lower and 

higher frequency values of the solution, 𝐺′ was greater 

than 𝐺′′ (Fig. 5). It was shown that elastic behavior of the 

pullulan solution was dominant at lower or higher frequency 

values [40]. It could be estimated that loss tangent showed 

more elastic value, which could be attributed to higher 

storage module values, compared to loss module values. In 

terms of complex viscosity, crossovers were shown with 

storage modules at higher frequencies. Complex viscosity 

could be calculated using complex module and frequency. 

At lower frequencies, complex viscosity was lower due to 

further stresses on biopolymer solution. At higher fre-

quencies, complex viscosity was higher due to use of less 

stresses, reaching storage module as the major component 

of elastic behavior. Thus, pullulan solution with the 

highlighted concentration included gel-like behaviors; in 

which, the elastic component was predominant [41]. 

 
Figure 5. Strain sweeps at 1.0 Hz to calculate moduli G′and 

G′′for the extracted pullulan under optimum conditions 

4. Conclusion 

The present study was carried out to optimize pullulan 

production from agroindustrial wastes using A. pullulans. 

The pH, molasses and CSL concentrations were considered 

as independent variables while the pullulan production yield 

was considered as dependent parameter or response. The 

response surface methodology results showed that the 

maximum production yield (18.29 g l-1 ±0.10) was achieved 

with pH of 5.3, molasses concentration of 165 g l-1 and CSL 

concentration of 43 ml l-1 as the optimal conditions. The 

FTIR analysis revealed presence of the chemical structure 

of pullulan in the supernatant.  

 
Figure 6. Frequency sweeps at 0.01% strain to calculate 

storage modulus (G′) and loss modulus (G′′) for the pullulan 

solution (2% w v-1) in association with the complex 

viscosity (η) 

Moreover, the produced polymer included an amorphous 

structure with high thermal stability and gel-like behavior. 

Eventually, it can be concluded that pullulan production 

from agro-wastes can be promising and molasses and CSL 

can be used as inexpensive but efficient sources for the 

production of this biopolymer. 
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ص ذرت به عنوان ضایعات کشت و صنعت: خوا مایعتولید پولولان با استفاده از ملاس و شربت 
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 2626آپریل  1دریافت 

 2626ژوئن   0  داوری

 2626جولای 11پذیرش 

  چکیده 

اشد. هدف این بسلولی میکروبی با کاربرد گسترده در صنایع گوناگون میساکاریدی برونپولولان پلی :سابقه و هدف 

عنوان  ذرت به مایع غلظت ملاس و شربت، pHمطالعه بررسی تولید پولولان از ضایعات کشت و صنعت و مطالعه 

 عنوان پاسخ بود. متغیرهای مستقل و راتدمان پولولان به

گرم عصاره  7گرم عصاره مخمر،  7محیط کشت تلقیح ) درصد حجمی حجمی 5طور خلاصه،  به ا:مواد و روش ه

لیتر محیط میلی 166به آئروبازیدیوم پولولانس لیتر آب مقطر( حاوی  یکگرم سوکروز در 16گرم پپتون و  5مالت، 

 06، و 16، 26ذرت ) مایع های گوناگون شربتگرم بر لیتر( و غلظت 266، و 156، 166کشت متشکل از ملاس )

کمک  به 1توده( اضافه شد. پس از استخراج و جداسازی زی5/0، و 5/5، 5/1تنظیم شده ) pHلیتر( با  لیتر بریمیل

درجه سلسیوس نگهداری  1ساعت در درجه حرارت  21مدت  اضافه و به 2سانتریفوژ، اتانول سرد به میزان دو برابر روماند

، پراکنش پرتو 7مادون قرمز تبدیل فوریههای طیف بینی نگهداری شد. پس از سانتریفوژ، پولالان خشک و آزمون

 و رئولوژی انجام شد. 5سنجی، گرماوزن1ایکس

( در شرایط بهینه تخمیر 16/6±گرم بر لیتر  22/18ها نشان داد بیشینه راندمان تولید )یافته گیری:و نتیجهها یافته

(pH بهمیلی 17گرم بر لیتر و غلظت شربت مایع ذرت  105، غلظت ملاس 7/5 برابر )دست آمد. سپس  لیتر بر لیتر

 0یراییگبدون نمشده مورد بررسی قرار گرفت. پولولان خواص حرارتی و فیزیکوشیمیایی پولولان تحت شرایط مشخص

بینی مادون قرمز تبدیل فوریه و پراکنش پرتو های ساختاری طیفدرصد داشت. همچنین، آزمون 8/78حلالیتی برابر 

آزمون  اساس نتایج سلولی، برساکارید برونساختاری غیرمتبلور در روماند را تایید کرد. پلیایکس وجود پولولان با 

که در آن ترکیب  ی قابل قبول و رفتار شبه ژل داشتترتیب پایداری حرارت سنجی و خواص رئولوژی بهگرماوزن

 الاستیک غالب بود.
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3 Fourier transform infrared spectroscopy or FTIR 

4 X-ray diffractometry or XRD 
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