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Abstract 

 

Background and objective: L-Sorbose, as a precursor of ascorbic acid, can be biologically 

produced using Gluconobacter oxydans. The aim of this study was to optimize production of 

L-Sorbose by controlling concentration of the substrates and starter cultures. 

Material and methods: In this study, effects of three various fermentation parameters on the 

concentration of L-sorbose were assessed using fermenter (28°C, 1.4 vvm) and response surface 

methodology. These parameters included quantities of D-sorbitol (120-180 g lDw
-1) (Deionized 

water) and yeast extract (6-18 g lDw
-1) and inoculum/substrate ratios (5-10%). 

Results and conclusion: Results showed that the fitted model with high values of R2 (0.9594) 

and R2-adjusted (0.9228) could effectively predict the concentration of L-sorbose within the 

highlighted ranges for the variables. Furthermore, results demonstrated that the maximum 

concentration of L-sorbose was achieved at 42.26 g lDW
-1 using D-sorbitol, yeast extract and 

inoculum/substrate ratio values of 153.42 g lDW
-1, 12.64 g lDW

-1 and 9.88%, respectively. These 

results have revealed appropriately of response surface methodology for the prediction of L-

sorbose product quantity and optimization of the variables in this aerobic fermentation process. 
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1. Introduction 

Vitamin C or L-ascorbic acid is one of the soluble 

vitamins in the aqueous systems with high antioxidant 

activity, which makes it further helpful in pharmaceutical, 

cosmetic and food formulations [1,2]. Furthermore, this 

vitamin can be used as an additive to prolong shelf-life of 

the food products [3]. Vitamin C, as an important 

metabolite, includes several benefits for most of the living 

organisms such as plants and animals [4]. This essential 

nutrient includes various physiological properties, playing a 

key role in the most of human biosynthetic pathways. 

Unlike some plants and animals, humans cannot synthesis 

vitamin C due to the lack of L-gluconolacton oxidase. 

Therefore, the vitamin must be used in human dietary via 

foods or supplements [1]. Industrial production of vitamin 

C through fermentation includes two major steps. In the first 

step, D-sorbitol is converted to L-sorbose by the activity of 

Gluconobacter oxydans [5]. The G. oxydans is an aerobic 

Gram-negative bacteria from acetic acid bacteria group, 

which can tolerate high concentrated solutions to oxidize 

alcohols and sugars [6,7]. In fact, the bacteria could 

successfully be used in novel biotechnology using chemical 

processes to produce numerous sugar derivatives and other 

valuable biological products [8]. In the second step, L-

sorbose is bio-converted into 2-keto-L-gulonic acid using 

Bacillus megaterium and Ktogulonigenium vulgare [5, 9]. 

The chemical can then easily be converted to L-ascorbic 

acid. 

http://dx.doi.org/10.22037/afb.v6i4.25906
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While chemical oxidation of D-sorbitol is faster than 

microbial oxidation of this chemical and can produce L- and 

D-sorbitol sugars, incomplete microbial oxidation of D-

sorbitol can selectively produce L-sorbose, which can 

increase yield of L-ascorbic acid, compared to that the 

chemical process can. Therefore, improvement of the 

production yield in the first step of microbial vitamin C 

production is important [10-12]. Studies have been carried 

out on the bio-conversion of D-sorbitol into L-sorbose 

through wild and genetically modified G. oxydans strains. 

Results have shown that the conversion yield is affected by 

multiple factors, including type and concentration of growth 

media, temperature, pH, dissolved oxygen concentration, 

inoculum/substrate ratio and type of fermenter [5,13,14]. 

Hence, the major objectives of the present study were 1) 

assessing effects of three fermentation parameters, 

including quantities of D-sorbitol (as carbon source) and 

yeast extract as nitrogen source) as well as 

inoculum/substrate ratio on production yield of the 

synthesized L-sorbose; and 2) optimizing fermentation 

conditions to achieve the highest L-sorbose concentration.  

2. Materials and methods 

2.1) Materials 

D-sorbitol, L-sorbose, yeast extract, NaOH and H2SO4 

were purchased from Merck, Germany. G. oxydans subsp. 

suboxydans (Acetobacter suboxidans) (PTCC 1051) was 

provided by the Persian Type Culture Collection (Iranian 

Research Organization for Science and Technology, 

Tehran, Iran). 

2.2) Biomass preparation 

To propagate the bacterial mass, culture media were 

prepared by adding 150 g of D-sorbitol and 12 g of yeast 

extract into 1 l of deionized water (D.W). Then, pH of the 

media was adjusted to 5.1 by adding NaOH (4% w w-1) and 

H2SO4 (2.5% w w-1) solutions. Culture media were sterilized 

using laboratory autoclave at 1.5 bar for 15 min at 121°C. 

Then, 1 ml of D.W was added into the slant culture of G. 

oxydans in a tube and shacked well. Suspended bacteria 

were added into 50 ml of the prepared culture media at room 

temperature and transferred into a laboratory shaking 

incubator (Labcon 5082U, South Africa) at 150 rpm for 12 

h at 30°C. 

2.3) Fermentation process  

The L-sorbose was produced during fermentation process 

using 400-ml bioreactor (Figure 1). Briefly, 300 ml of the 

sterile culture media containing various quantities of D-

sorbitol (120-180 g lDw
-1) and yeast extract (6-18 g lDw

-1) 

were prepared and various inoculum/substrate ratios (5-

10%) were added into the culture media and mixed well. 

Mixtures were then transferred into a fermenter with 1.4 

vvm aeration rate for 24 h at room temperature (~28°C) 

(Table 1). 

 
Figure 1. A 400-ml bioreactor, set at pH=5.1, T=28°C and 1.4 

vvm 

 
Table 1. The fermentation conditions and their relative levels 

Variable Unit  Level  

  Low Middle High 

X1, quantity of D-sorbitol g lDW
-1 120 150 180 

X2, quantity of yeast 

extract 

g lDW
-1 6 12 18 

X3, inoculum to substrate 

ratio 

% 5 7.5 10 

 

2.4) Assessment of L-sorbose 

After fermentation, L-sorbose concentration was 

assessed using high performance liquid chromatography 

Waters corporation, Milford, MA, USA) with a Sugar Pak 

Column (300 × 6.5 mm) (Waters corporation, Milford, MA, 

USA). The system was equipped with RI and UV detectors 

and D.W was used as mobile phase (eluent) with a flow rate 

of 0.3 ml min-1 at 70°C. Furthermore, L-sorbose solutions 

(40, 85 and 120 g lDw
-1) were used as controls to demonstrate 

relationships between the voltage (provided by detectors of 

high performance liquid chromatography at 120, 260 and 

360 mV, respectively) and concentration of L-sorbose and 

the peak area of the chemical (Figure 2). 
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2.5) Experimental design and data analysis 

Central composite design was used to design experiments 

and response surface methodology (RSM) was used to 

correlate the independent fermentation process variables, 

including quantities of D-sorbitol (X1) and yeast extract 

(X2) and inoculum/substrate ratio (X3), to response variable 

of L-sorbose concentration (Y). Therefore, the center point 

of each variable range was calculated (Table 1) [15]. Indeed, 

RSM is one of the most efficient statistical methods, which 

maximally decreases the time of sampling and best 

discusses data from the experiments [16,17]. Of several 

standard designs used in experiments, central composite 

design can be a good choice since due to its high yields 

[18,19]. A general quadratic polynomial equation (Eq. 1) 

was used to indicate the main, quadratic and interaction 

effects of the selected fermentation variables on the 

concentration of produced L-sorbose: 
2 2 2

2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 30 1 1
X X X X X X XY X X X X X                

 (Eq. 1)   

Where, β0, βi, βii and βij were constant, linear, quadratic 

and interaction coefficients, respectively. Coefficient of 

determination (R2), adjusted coefficient of determination 

(R2-adj) and lack of fit (P-value) were used to assess 

appropriateness of the generated model based on the 

experimental data [20,21]. To better visualize effects of the 

independent variables on L-sorbose concentration, three-

dimensional (3-D) surface plots and two-dimensional (2-D) 

contour plots were used. Moreover, numerical optimization 

was used to predict exact quantity of the optimum values for 

the fermentation parameters [22,23]. To verify appropriate-

ness and accuracy of the fitted model using RSM, additional 

3-D experiments were carried out at optimum fermentation 

conditions and compression tests were carried out. Analysis 

of variance was set a significance level of P≤0.05. Design 

Expert Software (Trial v.7.0, Stat-Ease, Minneapolis, USA) 

was used for the experiment design and model generation, 

optimization and verification. 

3. Results and discussion 

3.1) Model generation  

Based on the experimental design, 20 experiments, 

including six replicates for the center point, were carried out 

to assess values of the L-sorbose (Table 2). As shown in 

Table 2, concentration of the L-sorbose varied 25.3-45.4 g 

lDW
-1. Based on the data of L-sorbose concentration and use 

of a second order polynomial equation, a general model was 

fitted for the prediction of L-sorbose concentration linked to 

D-sorbitol and yeast extract quantities and inocul-

um/substrate ratio. The P-values and coefficients of each 

term of the fitted model are shown in Table 3. The main 

terms of yeast extract quantity and inoculum/substrate ratio 

and quadratic effects of D-sorbitol and yeast extract 

quantities included significant effects on concentration of 

the produced L-sorbose (P<0.05). The high values of R2 

(0.9594) and R2-adj (0.9228) demonstrated appropriateness 

of the generated model for the prediction of L-sorbose 

concentration within the highlighted ranges for the 

fermentation parameters.  

 

Table 2. Matrix of the central composite design for the L-sorbose production by Gluconobacter oxydans PTCC 1051 

Amount of L-Sorbose ( g lDW
-1) Ratio of inoculum to substrate (%) Amount of yeast extract ( glDW

-1) Amount of D-Sorbitol ( glDW
-1) Run 

26.3 5 18 120 1 

41.1 7.5 12 150 2 

45.4 10 12 150 3 

24 5 6 120 4 

36 5 12 150 5 

31.3 7.5 6 150 6 

33 7.5 18 150 7 

41.2 7.5 12 150 8 

35 7.5 12 180 9 

38.2 7.5 12 120 10 

41.1 7.5 12 150 11 

32 10 6 180 12 

31 5 18 180 13 

25.3 5 6 180 14 

28.2 10 6 120 15 

41 7.5 12 150 16 

39.8 7.5 12 150 17 

33.4 10 18 180 18 

33.1 10 18 120 19 

40.3 7.5 12 150 20 
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Table 3. The P-values and regression coefficients for the generated model of Gluconobacter oxydans PTCC 1051 

P-value  Regression coefficient 

Parameter Independent variable P-value  β Coefficient 

 X1 0.2071  β0 (constant) -92.77 

Main X2 0.0107  β1 1.07 

 X3 0.0005  β2 5.41 

    β3 3.34 

 X1
2 0.01  β11  -3.43×10-3 

Quadratic X2
2 0.0001  β22 -0.20 

      

 X3
2 0.4949  β33 -0.11 

    β12 -6.94×10-5 

 X1X2 0.9830  β13 -3.16×10-3 

Interaction X1X3 0.6867  β23 -0.01 

 X2X3 0.7180    

    R2-adjusted 0.9228 

    R2 0.9594 

1, D-sorbitol concentration (g lDW
-1); 2, yeast extract concentration (g lDW

-1); 3, inoculum/substrate ratio (%), X1= D-sorbitol, X2= yeast extract, X3= 

inoculum/substrate ratio,  

 

3.2) Effects of fermentation parameters on the 

concentration of produced L-sorbose 

Effects of the selected fermentation parameters, 

including quantities of D-sorbitol and yeast extract and 

inoculum/substrate ratio (in highlighted ranges for each 

parameter), on L-sorbose concentration are listed in Figures 

3-5. Figure 3a describes effects of D-sorbitol and yeast 

extract quantities on concentration of the produced L-

sorbose. As seen in Figure 2a, by increasing quantity of the 

yeast extract with constant quantities of D-sorbitol, 

concentration of L-sorbose increased and decreased, 

respectively. A similar result was observed for changing 

quantity of D-sorbitol with constant quantities of yeast 

extract on concentration of the produced L-sorbose. Results 

revealed that interaction of the quantities of D-sorbitol and 

yeast extract insignificantly affected concentration of the 

produced L-sorbose (P>0.05) (Table 3). As seen in Figure 

3b, the maximum concentration of L-sorbose was achieved 

using D-sorbitol and yeast extract at nearly their center point 

quantities. 

Figure 4a shows effects of D-sorbitol quantities and 

inoculum/substrate ratio on concentration of the produced 

L-sorbose. The figure clearly demonstrates that by 

increasing the inoculum/substrate ratio at constant 

quantities of D-sorbitol, the concentration of L-sorbose 

increased. A possible explanation is that by increasing the 

inoculum/substrate ratio, the population of G. oxydans 

increased in the fermenter. This subsequently increased the 

fermentation yield (quantity of the produced L-sorbose). 

This finding was similar to the finding by Shaghaghi-

Moghaddam et al. [24]. They reported that by increasing the 

inoculum concentration, concentration of the produced 

bioethanol by Saccharomyces cerevisiae increased. In 

contrast, by increasing the quantity of D-sorbitol at a 

constant inoculum/substrate ratio, concentration of the 

produced L-sorbose increased and decreased, respectively 

(Figure 4a).  

 
Figure 3. Surface plot (a) and contour plot (b) for the quantities of 

L-sorbose (g lDW
-1) produced by Gluconobacter oxydans as a 

function of yeast extract and D-sorbitol concentration (g lDW
-1) 

 

It seems that by increasing the quantity of D-sorbitol, 

osmosis pressure of the fermentation culture media 

increased, which included inhibitory effects on G. oxydans 

growth as well as the bacterial specific action on the 

prepared substrate. Furthermore, this increase in osmosis 

pressure decreased the fermentation efficiency. This finding 

was similar to the finding by Edwards, who reported that 

high substrate concentrations might inhibit the bacterial 

growth and damage metabolism of the microorganisms [25].  
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Figure 4. Surface plot (a) and contour plot (b) for the 

quantities of L-sorbose (g lDW
-1) produced by 

Gluconobacter oxydans as a function of inoculum 

proportion (%) and D-sorbitol concentration (g lDW
-1) 

 

 
Figure 5. Surface plot (a) and contour plot (b) for the 

quantities of L-sorbose (g lDW
-1) produced by 

Gluconobacter oxydans as a function of inoculum 

proportion (%) and yeast extract concentration (g lDW
-1) 

 
 

No curves in Figure 4a revealed insignificant effects of 

the inoculum/substrate ratio and quantity of D-sorbitol on 

concentration of the produced L-sorbose. This result was 

verified using the statistical data, which demonstrated that 

interaction between these two parameters was significant 

(P=0.6867) (Table 3). Figure 4b shows the optimum regions 

of the inoculum/substrate ratio and quantity of D-sorbitol. 

Based on the figure, the maximum concentration of L-

sorbose was achieved at higher inoculum/substrate ratio and 

middle quantities of D-sorbitol. Figures 5a and 5b illustrate 

effects of the inoculum/substrate ratio and quantity of yeast 

extract on concentration of the produced L-sorbose; as 

reported by other researchers. 

3.3) Optimization and validation procedures of the 

fermentation conditions 

Numerical optimization, within the highlighted ranges 

for the three fermentation parameters, revealed that the 

maximum concentration of L-sorbose (42.26 g lDw
-1) was 

achieved using D-sorbitol, yeast extract and 

inoculum/substrate ratio of 153.42 g lDW
-1, 12.64 g lDW

-1 and 

9.88%, respectively. Using predicted values for the 

fermentation parameters, three additional experiments were 

carried out and concentration of the produced L-sorbose was 

assessed as 45.4 g lDW
-1 ±4. Statistical analysis showed no 

significant differences between the predicted and 

experimental values for the concentration of produced L-

sorbose at the highlighted fermentation conditions. 

Moreover, results demonstrated high accuracy and 

appropriateness of the fitted model based on the values of 

the experiments and central composite design. Figure 6 

represents compressions between the predicted and 

experimental values of the L-sorbose concentration. 

4. Conclusion 

In conclusion, high concentrations of L-sorbose were 

achieved in the present study using optimization of the 

fermentation conditions. However main and quadratic terms 

of the most variables showed significant effects on 

concentration of the produced L-sorbose (P≤0.05), their 

interactions showed no significant effects. It seems that 

optimization of other important fermentation parameters 

such as aeration rate, temperature and pH in this study has 

further increased the concentration of L-sorbose. Moreover, 

results have revealed the appropriateness of RSM in other 

biological systems. 
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Figure 6. Predicted values against actual values for L-sorbose concentrations (g lDW
-1) 
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  چکیده 

 سگلوکونوباکتر اکسیدانسوربوز، به عنوان پیش ساز برای تولید آسکوربیک اسید، توسط باکتری  -ال سابقه و هدف:
و  1هاسوربوز با کنترل غلظت رشدمایه-باشد. هدف این مطالعه بهینه سازی تولید البه روش بیولوژیکی قابل تولید می

 حیط های کشت آغازگر می باشد.م

یتر گرم بر ل180 -120سوربیتول ) -متغیر فرایند تخمیر، شامل مقدار دی 3در این مطالعه، اثرات ا: مواد و روش ه

درصد(،  10 -5تر آب دیونیزه( و نسبت تلقیح به محلول سوبسترا )گرم بر لی18 -6آب دیونیزه(، مقدار عصاره مخمر )

شراسوربوز با -بر غلظت ال ستفاده از فرمانتور تحت  واحد حجمی به ازای واحد  4/1و هوای ورودی  C28°یط دمای ا

 ( و به روش سطح پاسخ مورد بررسی قرار گرفت.vvmحجم محلول کلی بر دقیقه )

تواند به طور مؤثری دساات آمده در روش سااطح پاسااخ، میه یافته ها نشااان داد که مدل ب گیری:و نتیجهها یافته

ضریب تعیینس -غلظت ال شخص متغیرها، با مقادیر بالای  شده در محدوده های م ضریب 9594/0) 2وربوز تولید  ( و 

 26/42سااوربوز،  -( پیش بینی کند. علاوه بر این، نتایج نشااان داد که حداک ر مقدار ال9228/0) 3تعیین تعدیل شااده

ستفاده از  گرم بر لیتر آب دیونیزه  64/12سوربیتول، -دی گرم بر لیتر آب دیونیزه 2/153گرم بر لیتر آب دیونیزه با ا

صاره مخمر و  سترا به 88/9ع سوب سبت تلقیح به محلول  صد ن ست میدر سطح د ست که روش  آید. نتایج بیانگر این ا

 سوربوز و بهینه سازی متغیرها در فرایند تخمیر هوازی مناسب است.-پاسخ برای پیش بینی میزان تولید ال

 .نویسندگان تایید می نمایند که تضاد منافعی ندارند تعارض منافع:

 واژگان کلیدی

 تخمیر هوازی ▪

 آسکوربیک اسید ▪
 سگلوکونوباکتر اکسیدان ▪

 سوربوز -ال ▪

 روش سطح پاسخ ▪
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2 R-squared or R2 
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