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Abstract

Background and Objective: Due to oil shortage and environmental problems, synthetic
plastics will surely be replaced by alternative, biodegradable materials. A possible good
example could be polyhydroxyalkanoates, and the inexpensive agricultural fatty by-products
could be usefully converted to polyhydroxyalkanoates by properly selected and/or
developed microbes.

Material and Methods: Among the more common by-products available, a variety of lipid-
rich residues have been explored as substrate, such as crude glycerol from biodiesel,
biodiesel obtained from fatty residues, and, from slaughterhouse, bacon rind, udder and
tallow. In this paper, several new isolates and collection PHA-producing microbes have been
screened for both lipolytic activities and polyhydroxyalkanoates production. The soil proved
to be the most promising mining place to find new interesting microbial species, even better
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than more specific and selective environments such as slaughterhouses.

Results and Conclusion: Remarkably, two of the collection strains used here, known to be
polyhydroxyalkanoates producers, resulted as really promising, being able to grow directly
on all the substrates tested and to produce variable amounts of the polymer, including the

co-polymers P (3HB-co-3HV).

Conflict of interest: The authors declare no conflict of interest.

Department of Agronomy Food
Natural Resources Animals and
Environment (DAFNAE)
Agripolis Universit di Padova
Viale dell’Universita, 16

35020 Legnaro, PADOVA, ltaly.

Tel: +49-8272922
Fax: +49-8272929
E-mail: sergio.casella@unipd.it

1. Introduction

In the future, because of oil shortage and environmental
problems, synthetic plastics will surely be replaced by
alternative, biodegradable materials. A possible good
example could be polyhydroxyalkanoates (PHASs) [1].
These relatively new biopolymers are polyesters potentially
usable in a number of different applications because of
having properties similar to petrochemical thermo-plastics
and/or elastomers [2,3,4]. Nevertheless, their substitution
over the conventional plastics is limited by their expensive
manufacturing. Therefore, the search for suitable and cheap
feedstocks for PHAs is one of the main issues in their entire
production chain, representing up to 50% of the process
costs [5,6]. Inexpensive and abundant by-products have

been exploited for the production of polymers, fuels,
enzymes and bulk chemicals [7-13].

The use of industrial or agricultural residues can
effectively decrease also PHAs cost [14-18]. Waste fats and
oils from agricultural and food industries are also potentially
useful feedstocks for fermentation processes to produce
bioplastics, fuels and surfactants [19-21]. Only lately
triglycerides from agricultural and food processing
industries were considered as carbon substrates for PHAS
production [22-24]. In this perspective, fatty residues from
slaughterhouse plants could serve as cheap carbon source
for the microbial PHAs production. These by-products are
continuously produced in huge quantities worldwide,
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resulting in expensive management problems. For instance,
the yearly volume of animal lipids from the slaughtering
processing has been calculated with more than 500,000 ton
[25,26].

However, the cost-effective production of PHAs from
animal lipids has not yet been achieved because microbes
with the combination of substrate-utilization and PHAS
production are not currently available. To obtain PHAs from
waste oils or fats from food industries, which is the aim of
the present research, bacteria should be both outstanding
PHAs producers and proficient in hydrolysing triglycerides
and using the resulting acyl chains to grow and/or
accumulate PHAs. Theoretically, such bacteria could be
obtained mostly applying two research approaches: 1) the
engineering of non-lipolytic micro-organisms with native
and excellent aptitude for high PHAs product yields and
accumulation or 2) the search for novel natural strains
capable of efficiently converting lipids into PHAs.

Within the first strategy, we lately developed a
recombinant lypolytic strain of Delftia acidovorans DSM39
capable of processing several slaughterhouse by-products,
such as lard, udder and tallow, into valuable PHAs with high
molar fractions of 4-hydroxybutyrate (4HB) [27].

Regarding the second approach, few microbial strains
have been recently isolated from soil and slaughterhouse
wastewater as encouraging lipolytic and PHAs producing
microbes [28]. Nonetheless, PHAs levels and yields were
still far from the standards required for industrial
applications and further studies are required to pave the way
for their efficient exploitation as PHASs producers from fatty
waste streams.

In this study, we evaluated the direct use of waste animal
fats as carbon feedstocks for PHAS using collections strains
as well as novel soil isolates as biocatalysts. Various
industrially relevant fats (crude glycerol from biodiesel,
biodiesel obtained from fatty residues, bacon rind, udder
and tallow waste oil) were used as substrate for both lipase
activities and PHAs production. Among the fourteen tested
strains, two collection microbes, namely Cupriavidus (C.)
necator DSM 545 and Pseudomonas (P.) oleovorans
DSM1045, have been selected for their great promise and
further investigated to assess their real potential to process
several fatty by-products into PHAs.

2. Materials and methods

2.1 Isolation of lipolytic Bacteria, culture media and
growth conditions

Within a wilder isolation programme started from 2011,
indigenous bacteria from soil of the experimental station of
the University of Padova and from waste waters of different
slaughterhouses were isolated by plate dilution standard
methods [28]. Agar plates of minimal salts medium (MSM)
containing commercial corn oil (2.5%
w v) or commercial lard (2.5% w vt) as only carbon source

46

and arabic gum (1.0% w v) as emulsifier were used for
strain selection. Isolated colonies were then streak-plated
onto both solidified MSM and nutrient medium containing
corn oil and Rhodamine B (Sigma) (0.001% w v) and
incubated at 30 and 37°C. Lipolytic activity associated with
bacterial colonies was visualised using a hand-held UV
transilluminator (Model UVGL55; UVP Inc., CA, USA) at
a wavelength between 350 and 365 nm [29,30].

For the identification of the isolated bacteria, genomic
DNA was extracted and purified as described, its purity
assessed, and universal primers Rln (5’-GCTCA-
GATTGAACG-CTGGCG-3) e U2 (5-ACATTTC
ACAACACGAGCTG-3’) used to amplify a 16S rDNA
fragment of about 1-kb [31,32]. QIAquick PCR Purification
kit (Quiagen) was used for PCR product purification which
was then resuspended in 30 pl deionised water. The dideoxy
chain termination method was subsequently used for DNA
sequencing by an ABI Prism 3100 DNA Analyzer, using an
ABI Prism Big Dye Terminator Cycle Sequencing Ready
Reaction kit (PE Biosystems) according to the
manufacturer. 16S rDNA sequence similarities were
searched in GenBank and RDP databases [33].

For growth and polymer accumulation the selected
isolates were cultured by one-step procedure [34]. The
production of the necessary biomass was obtained in NB or
in minimal salts medium MSM or DSMZ81 (Deutsche
Sammlung Mikroorganismen und Zellkulturen GmbH,
http://ww-w.dsmz.de/, Germany) containing 3% fatty
substrates as unique carbon source and 1 gl NH4CI. The
lipid-rich by-products were glycerol, crude glycerol from
biodiesel and, from slaughterhouse, biodiesel obtained from
fatty residues, lard, bacon rind, udder and tallow (produced
as waste streams and kindly provided by the animal-
processing company U. Reistenhofer GmbH, Austria). Solid
carbon sources were finely minced and added to the medium
before sterilization. All liquid cultures were grown at 30 or
37°C in shaking flasks (150 rpm). When necessary, media
were solidified by the addition of 1.5% w v! agar.

2.2 Biomass and cellular protein measurements

The bacterial biomass was measured by drying to
constant mass at 80°C a washed pellet obtained from 10 mli
of the bacterial suspension. The Coomassie plus protein
assay reagent kit from Pierce (Rockford, IL, USA) was
adopted to determine cell protein, by using bovine serum
albumin as a standard.

2.3 Lipase assay

A titrimetric assay was used to measure lipase activity of
both the new isolates and collection strains [35]. The
supernatant of the bacterial cultures (5 ml) was added to 50
ml of 5% v v* olive oil or corn oil emulsion in 50 mM Tris-
HCI buffer (pH 8), containing 5% w v'* of arabic gum, and
the mixture incubated at 37°C for 3 h. Every 30 min
5 ml were taken and analysed. The reaction was stopped by
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adding 10 ml ethanol and the released fatty acids were
titrated against 0.05 M NaOH using phenolphthalein as an
indicator. The amount of fatty acid released was calculated
by using the difference in titer values between samples and
blank. The amount of enzyme releasing 1 pmol of fatty acid
per minute under assay conditions was defined as one unit
of lipase activity.

2.4 Analyses of PHA

The ability to accumulate PHA was tested by a
preliminary plate Nile Red staining as previously described
[27]. The concentration of PHAs was determined in
centrifuged cells as previously described [36]. A Thermo
Finnigan Trace GC, equipped with FID detector and AT-
WAX capillary column (30m x 0.25mm x 0.25 um, Alltech
Italia s.r.l., Milan, Italy) and helium as gas carrier, at flow
rate 1.2 ml min, were used to quantify 3-hydroxyalkyl
esters. The split/splitless injector, detector and oven
temperatures were 250, 270 and 150°C, respectively. GC-
temperature programme was as previously described [37].
Benzoic acid served as internal standard, and the external
standards, purchased from Sigma-Aldrich (ltaly), were:
Poly  (3-hydroxybutyric acid) (PHB), Poly (3-
hydroxybutyric acid-co-3-hydroxyvaleric acid) P (3HB-co-
12 mol% 3HV). Results were expressed as percentage of
PHAs on cell dry mass.

PHA monomer composition was determined by nuclear
magnetic resonance (*HNMR), by using a Varian Gemini
200 (200 MHz) spectrometer interfaced with a Sparc4 (Sun)
console and software VNMR6.1B [38]. Spectra were
processed by using Mestre software. NMRspectra were
recorded on 2% w v! solutions, by using CDCl; as solvent.

3. Results and discussion

Within a long term isolation programme started from
2011, a number of new isolates and collection PHA-
producing microbes were screened for lipolytic activities
[28]. After a base investigation and subsequent first
selection on their ability to produce PHA from simple and
related carbon sources, a variety of lipid-rich residues have
been explored as substrate, such as glycerol, crude glycerol
from biodiesel and, from slaughterhouse, biodiesel obtained
from fatty residues, lard, bacon rind, udder and tallow.
Interestingly, the most active isolates, in terms of PHA
production, never resulted to be those isolated from
slaughterhouse (data not shown), thus indicating that within
such a specific environment, exceptionally rich in carbon
(from fats) and nitrogen (from animal protein degradation)
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sources, the bacteria find constantly suitable conditions to
grow and reproduce and did not evolve the specific need to
accumulate reserve polymers. In other words, they are only
easily surviving thanks to their lipase activities. On the other
hand, the soil represents an extremely wide environment
where microorganisms are induced to rapidly evolve
different metabolic activities while competing with high
numbers of different microbial species, and where many
more essential growth components could not be
continuously found. Among the soil isolates, indeed, some
strains gave appreciable PHA values when incubated in the
presence of simple fats and glycerol, and further, it was also
possible to select bacterial strains able to produce the
polymer from biodiesel and lard (Table. 1).

In the same Table. 1, the preliminary results obtained by
the collection strains are also reported. While Acinetobacter
venetianus DSM 23050 showed the highest lipase activity,
this strain was unable to produce appreciable amounts of
polymers from glycerol and biodiesel.

However, as observed by further growth and polymer
production experiments performed in flasks (data not
shown), the efficiency of the new isolates as compared to
previously selected known collection strains, was definitely
lower.

On this basis, two strains, C. necator DSM 545 and P.
oleovorans DSM 1045 have been selected for their ability
to grow on such feedstocks and exhibiting the highest PHAs
yields.

C. necator DSM 545 was grown firstly in DSMZ81 solid
and liquid medium using crude glycerol phase (CGP),
biodiesel and pure glycerol, stearic acid methyl ester,
palmitic acid methyl ester and myristic acid methyl ester.
The aim of testing bacterial growth in these last three acid
methyl esters was to check if the strain could use the
saturated fraction of the biodiesel, mainly composed by a
mixture of them. As shown in Table. 2, C. necator DSM 545
can use pure glycerol and biodiesel to grow and produce
PHA and, with less efficiency, crude glycerol and the three
methyl esters.

In a second set of experiments (Table 3), different
combinations of substrates were tested, as well as other
carbon sources. The results indicated that C. necator DSM
545 is able to use all the carbon sources for growth and PHA
accumulation. The addition of biodiesel to glycerol can
serve as co-substrate to introduce more hydroxyl-valerate
monomers units into the polymer, probably due to its
possible and variable margaric acid content [39].
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Table 1. A selection of bacterial collection strains and new soil isolates showing promising lipase activity and a preliminary test on different
lipid-rich containing substrates for their direct production of polyhydroxyalkanoates.

PHAs*
Strains Lipase ** Glycerol Biodiesel Oil Lard
Collection strains
DSM 63 Hydrogenophaga palleroni 0.32 ++ + + +
DSM 1045  Pseudomonas oleovorans 0.27 ++ ++ ++ ++
DSM 3456  Pseudomonas fragi 0.18 + + ++ +
DSM 545 Cupriavidus necator 0.19 ++ ++ ++ ++
DSM 13225 Diaphorobacter sp. 0.13 + +
DSM 23050 Acinetobacter venetianus 0.57 ++ +
Soil isolates
SC-S1 Leifsonia sp. 0.30 + + + +
SC-S5 Enterobacter sp.. 0.19 + + + +
SC-N1 Pseudomonas sp. 0.37 ++ + + +
SC-N22 Pseudomonas sp. 0.52 ++ + + +
SC-93 Bacillus sp. 0.39 + + + +
SC-95 Staphylococcus sp. 0.25 + + + +
SC-96 Staphylococcus sp. 0.55 + + + +
SC-97 Rhodococcus sp. 0.20 + + + +

* Nile Red test, PHAs= polyhydroxyalkanoates.

** Specific activity: umol (minute x mI)™: one unit of lipase activity was defined as the amount of enzyme that released 1 pumol of fatty acid per minute under
assay conditions.

Table 2. Growth and PHA production of Cupriavidus necator DSM 545 on different carbon sources. The accumulation step was maintained
for 48 h. The values represent the means of three replicates and SD is always below 7%.

Carbon source CDM (g 1Y) PHA (g I'Y) PHA (% of CDM)
Pure glycerol 9.2 4.8 52.9
Crude glycerol 5.1 2.1 41.4
Biodiesel 116 5.9 51.6
Stearic acid methyl ester 2.9 0.8 29.3
Palmitic acid methyl ester 2.8 0.9 323
Myristic acid methyl ester 3.2 1.2 37.1

Table 3. Polyhydroxyalkanoates production of Cupriavidus necator DSM 545 on further combinations of carbon sources. The accumulation
step was maintained for 72 h. The values represent the means of three replicates + SD.

Sample no. Carbon source PHA (% of CDM)
1 Pure glycerol 90+2
2 Pure glycerol + 2.5% v v! biodiesel 67412
3 Crude glycerol 25+11
4 Crude glycerol + 2.5% v v* biodiesel 3718
5 Oleic acid 4149
6 Bacon rind 11+2
7 Udder 55+13
8 Tallow 2312
9 Waste oil 2147
10 Enzymatic digested waste oil 81+17
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Such an effect was confirmed by H-NMR analysis
spectra of some samples, as shown in Fig. 1. First of all, the
graphs analysis indicates that all the polymers produced
from the different substrates that have been tested (samples
n. 1, 2, 7 and 10 of Table. 3) are P (3HB-co-3HV)
copolymers and their 3HV content varies from 0.99 to 2.48.
Indeed, leaving aside the signals observed at about 7.2 ppm
due to CDClIs impurities and the peaks at 5.25 ppm, 2.55
ppm and 1.30 ppm ascribable to 3-hydroxybutyrate, the
presence of 3-hydroxyvalerate in the copolymers was
revealed by the peaks at 0.95 ppm and 1.65 ppm.

Sample n. 1 (HB/HV 98.51/1.49)
-

Sample n. 2 (HB/HV 97.52/2.48) ‘ / v
Sampl 9 5 L ) \%‘/ N/

Sample n. 7 (HB/HV 98.44/1.56) ‘ ‘ ‘
o
. |
Sample n. 10 (HB/HV 99.01/0.99)
o
12 " 10 9 8 7 6 5 4 3 2 1 0

Chemical shift (ppm)

Figure 1. 'H-NMR analysis spectra of polymers extracted from C.
necator DSM 545 grown on pure glycerol (Sample 1), pure
glycerol + 2.5% v v biodiesel (Sample 2), udder (Sample 7) and
enzymatic digested oil (Sample 10) as reported in Table 3.

In a similar and parallel series of growth and PHA
production tests, P. oleovorans DSM 1045 was used. Even
in this case, the strain was able to produce both biomass and
polymers (Table 4), although with amounts lower than those
obtained by C. necator.

Table 4. Growth and polyhydroxyalkanoates production of
Pseudomonas oleovorans DSM 1045 on different carbon sources.
The accumulation step was maintained for 48 h. The values
represent the means of three replicates and SD is always below 5%.

Carbon source CDM PHA PHA
@)y (gI) (%ofCDM)

Pure glycerol 6.3 2.9 46.7
Crude glycerol 4.0 0.8 20.2
Biodiesel 9.5 25 16.3
Stearic acid methyl 4.7 1.0 21.3
ester

Palmitic acid methyl 5.8 1.6 275
ester

Muyristic acid methyl 49 1.7 35.6
ester

However, this observation has to be only partially
considered because all the experiments were conducted in
flasks and, once again, in a second set of experiments, the
values appeared to be higher (Table 5).

Although more sporadically, even in the case of P.
oleovorans the PHAs obtained were co-polymers containing
3HV fractions (data not shown). This observation, on both
P. oleovorans and C. necator, represents an interesting
starting point to deeply investigate on the different
structures of the polymer potentially produced by these
strains, obtainable by calibrating both the composition of the
growth media and the incubation conditions.

4. Conclusion

This research can be considered as preliminary within a
wider programme of isolation, characterization, selection
and development of superior microbial strains. Once again,
the soil proved to be the most promising mining place to find
new interesting microbial species, even better than more
specific and selective environments such as slau-
ghterhouses. However, newly isolated strains are almost
never ready at once to be used for any possible application.

Table 5. Polyhydroxyalkanoates production of Pseudomonas oleovorans DSM 1045 on further combinations of carbon sources. The
accumulation step was maintained for 72 h. The values represent the means of three replicates +SD.

Sample n. Carbon source PHA (% of CDM)
1 Pure glycerol 7112
2 Pure glycerol + 2.5% v v* biodiesel 46+17
3 Crude glycerol 2619
4 Crude glycerol + 2.5% v v* biodiesel 21+7
5 Oleic acid 32+2
6 Bacon rind 8+2
7 Udder 15+3
8 Tallow 13+2
9 Waste oil 21+6
10 Enzymatic digested waste oil 76114

The collection strains used here were known to be PHAs
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producers, but their ability to utilize fats as substrate was
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almost unknown. Remarkably, two of them resulted as
really promising, being able to grow directly on all the
substrates tested and to produce variable amounts of the
polymer. Even more notable is the finding that these strains,
especially C. necator DSM 545, could produce co-polymers
(P(3HB-c0-3HV)) even starting from glycerol as the only
carbon source.

Some combinations of strain/substrate/incubation condi-
tions indicated that both growth and polymer production are
very variable, especially if performed in small scale
experiments such as flasks. As always observed in a scale-
up from flask to bioreactor until big size plant, the
production could be considerably improved, for instance by
using a double step process, thus suggesting that the results
here obtained, also starting directly from slaughterhouse
residues, could be significantly upgraded [40].

Finally, it is interesting to note that the substrates here
tested could be used for the production of both scl- and mcl-
PHAs. Indeed, C. necator is known to possess class |
synthases that utilize short chain length hydroxyalkanoate
monomers, while class Il synthases are typical of
pseudomonads able to polymerize medium chain length
PHAs [41,42].
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