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Abstract

Background and objective: B-galactosidase enzymes hydrolyze lactose into glucose and
galactose for production of lactose free dairy products. However, different ions and fat
content in milk may act as the inhibitor or activator for B-galactosidase enzymes. A cold-
active p-galactosidase enzyme (BGalP), originally from Planococcus sp. L4, was previously
expressed in Pichia pastoris to perform lactose hydrolysis in the refrigerated milk. In this
study, the effects of milks major ingredients were evaluated on the enzymatic kinetics to
confirm its capacity for hydrolyzing milk lactose.

Material and methods: The activity was determined in different concentrations of NaCl,
KCI, MgCl;, and CaCl; as well as in the milk with low, medium or high-fat content. In these
experiments ortho-Nitrophenyl B-galactoside was used as the substrate. Additionally,
glucose was measured as the product after incubation of milk with BGalP enzyme for 24 h
at room temperature.

Results and conclusion: This study demonstrated that ions and fat content did not adversely
affect the enzyme activity in the concentration corresponding to the milk contents. Ca (27.5-
32,5 mM), Cl (25.3-30.9 mM), Na (15.2-39.1 mM) and Mg (3.75-5.83 mM) had no
inhibitory effects, but KCI decreased the enzyme activity. Since CI existed in MgCl,, and
CaCl; exerted no inhibitory effects, it can be concluded that inhibitory effects of KCI
resulted from potassium rather than chloride. The results indicate that BGalP enzyme was
not inhibited by milks major ingredients and has the potential to be used for the production
of lactose-free dairy products.
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1. Introduction

Milk is a rich source of macro and micronutrients;
however, lactose intolerance, affecting nearly 70% of the
population, discourages many adults from milk
consumption [1-5]. The common solution is production of
lactose-free milk and other dairy products by using p-
galactosidase for hydrolysation of lactose into glucose and
galactose [6]. This process increases sweetness of the
product and reduces sugar consumption in the dairy
products [5]. B-galactosidase enzymes have been also used
for synthesis of galacto-oligosaccharides as probiotics
[7,8]. These enzymes are naturally expressed in different
plants, animal cells and more commonly in micro-
organisms such as bacteria, yeast, and fungi [5]. The most
important industrial sources of [-galactosidase are
Kluyvermyces (K.) fragilis, K. lactis, Aspergillus (A.) niger

and Escherichia (E.) coli [9,10]. However, due to low
levels of expression, its extraction from these natural
sources is not economical. Alternatively, production of an
enzyme as a recombinant protein can reduce the
production costs [11]. Cold-active p-galactosidase (BGalP)
enzymes have been considered for lactose hydrolysis in
refrigerated milk, which was reported to be highly active
for lactose hydrolysis at 5 and 20°C [12,13]. Such
psychrophilic enzyme, originally from Planococcus sp. L4,
was previously expressed as a recombinant protein in
Pichia (P.) pastoris in our laboratory [14]. However, its
Kinetic properties were yet to be investigated.

The enzymes isolated from various sources have different
properties including molecular weight, metal ion
requirement, and the pH and temperature for their optimum
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activity [15]. Depending on the source of the enzyme,
metal ions, glucose and galactose may differently affect
enzymatic activity of the B-galactosidase. For example,
activity of the enzyme isolated from K. lactis was
increased in presence of metal ions such as Manganese and
was inhibited in the presence of imidazole above 50 mM,
as well as galactose and Ca [16,17]. Glucose has been
reported as an activator for the B-galactosidase enzyme
[18].While the B-galactosidase extracted from Bacillus (B.)
licheniformis DSM 13 and E. coli have been inhibited
strongly in the presence of glucose and galactose, their
activity was increased with metal ions K and Na (1-100
mM), Mg, Mn and Ca (1 mM) [19].

The activity of the enzyme extracted from Fusarium
oxysporum is inhibited at the presences of divalent cations
as Zn, Mg and Ca [20].The stability and activity of the -
galactosidase from Lactobacillus pentosus was increased at
presences of Mg [21]. The enzyme isolated from
Enterobacter cloacae is activated by Mg, but inhibited by
Pb and Zn [22]. Since lactose hydrolysis results in
galactose production and Ca is also one of the main
naturally occurring ingredients in milk, these enzymes may
not be suitable for the production of lactose-free milk [23].
In this study, the effects of different metal ions and fat
content were investigated on the kinetics of the BGalP
enzyme to evaluate its capacity for production of lactose-
free dairy products.

2. Materials and methods

BGalP expression

The P. pastoris, previously transformed to express BGalP,
was cultured in buffered complex medium with glycerol
(BMGY) containing yeast extract (10 g I') (Himedia,
India), peptone (20 g I*) (Sigma-Aldrich, USA), yeast
nitrogen base (13.4 g I'Y) (Sigma-Aldrich, USA), glycerol
(10% wv1) (Merck, Germany), biotin 0.4 mg I"* (Alborz-
daru, Iran) in 100 mM potassium phosphate buffer (pH
6.0) (Merck, Germany) [14]. When the ODsgo reached 1.5,
the medium was replaced by buffered complex medium
containing methanol (BMMY). This medium contained the
similar ingredients to BMGY except for the glycerol which
was replaced by 2% v v methanol (Merck, Germany) to
stimulate expression of the BGalP protein. The expression
was continued for 5 days and the supernatant concentrated
4-times using a 10 kDa MVCO (Merck, Germany).

Enzyme activity assay using ONPG as the substrate

The enzyme activity in the culture supernatant was
measured in Z buffer (60 mM NaHPO4, 40 mM
NaH2PO4, 10 mM KCI, 1 mM MgSOs, 50 mM B-mercap-
toethanol (Merck, Germany), pH 7.0) and ortho-
Nitrophenyl B-galactoside (ONPG) (Sigma-Aldrich, USA)
as the substrate as previously described (18). The
absorbance was measured using a Victor X5 plate reader
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(Perkins Elmer, Waltham, MA). As recommended in the
manual for Pichia Expression Kit (Invitrogen, catalog no.
K1710-01), B-galactosidase activity (IU ml-* of the culture
supernatant) was calculated by multiplying OD42 change
in each minute by 380 (a constant value related to the
ONPG extinction coefficient). The only modification in the
calculation method was to normalize the enzyme activity
to the culture supernatant volume (ml?) rather than its
protein content (mgL).

Evaluating the effect of metal ions on BGalP activity

Stock solutions of KCI (100 mM), NaCl (88 mM),
MgClz (21 mM) and CaCl, (130 mM) (all from Merck,
Germany) were prepared in Z buffer. These stocks
contained the concentration of ions nearly 4 times more
than milk and were diluted serially in Z buffer for
measuring BGalP enzyme activity.

Comparing BGalP activity in Z buffer and deionized
water

In a 96-well plate, serial dilutions of lactose (Merck,
Germany) were prepared in deionized water and Z buffer.
Then 20 ul of culture supernatant was added to each well.
After 24 h incubation at room temperature, the concent-
ration of glucose was evaluated according to the product
using Pars Azmun kit (Pars Azmun kit, Iran). The enzyme
activity was calculated as micromole(s) of glucose
produced per minute.

Investigating the inhibitory effect of lactose on BGalP
activity

The BGalP enzyme activity was determined in presence
of 5% lactose and different concentrations of ONPG.

Effect of milk fat concentrations on recombinant
BGalP activity

The enzyme (20 pl of the culture supernatant) was
added to 100 pl of commercially packed milk with
different concentrations of fat (1.5, 2.5, 3%). After 24 h
incubation at room temperature, the concentration of
glucose was measured, the enzyme activity (IU min't) was
calculated as micromole(s) of glucose produced per
minute.

Statistical analysis

The final results were analyzed by GraphPad Prism
software 7 for Windows (GraphPad Software, San Diego,
CA). The data was analyzed using nonlinear regression fit
and Michaelis-Menten enzyme kinetics model (V=Vmax [S]
(Kn+[S])* to calculate Ky and Vmax values. The mean
values calculated from three independent experiments were
compared using ANOVA in SPSS 16 software package
(SPSS Inc, IL) and considered significantly different if the
p-value were <0.05. Data presented is expressed as
Mean+SD.
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3. Results and discussion

BGalP was produced in P. pastoris in an attempt to
preserve nutrients and taste, increasing process flexibility
and reducing the cost of manufacturing lactose-free milk
through performing lactose hydrolysis at refrigerated
temperatures [14]. This is a preliminary investigation
aiming to determine whether BGalP is an appropriate
enzyme for the production of lactose-free milk.

The effects of metal ions on BGalP activity

The enzyme activity at buffer Z [recommended as
optimal condition in the manual for Pichia Expression Kit
(Invitrogen, catalog no. K1710-01) were 1482 IU ml. The
BGalP activity was not adversely affected by MgCl, at the
concentrations up to 21 mM. In contrast, adding KCI led to
about 2 fold decrease of enzyme activity (Fig. 1). These
results indicate that Mg?* and CI- ions, unlike K*, did not
exert any inhibitory effects of BGalP activity at the
concentrations up to 4 times higher than those naturally
occurring in cow milk.
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Figure 1. Evaluating the effects of different concentrations of
KCI and MgCI, on enzyme activity. The enzyme activity was
determined in Z buffer containing KCI (3.12-100 mM) and
MgCl, (0.325-20.8mM). Ortho-Nitrophenyl B-galactoside was
used as the substrate. BGalP activity was calculated by
multiplying ODa420 change in each minute by 380 (a constant
value related to the ortho-Nitrophenyl B-galactoside extinction
coefficient) and finally its normalization to the culture
supernatant volume added to the reaction. The experiments were
repeated three times and their mean was reported as IU ml-! of the
culture supernatant.

There are some inconsistent reports on effects of
magnesium on enzyme activity of the B-galactosidase
extracted from Arthrobacter sp. Mg?* acted as an inhibitor
for the enzyme extracted from Arthrobacter sp.32c, but as
an activator for the enzyme derived from Arthrobacter sp.
B7 [12,24].

The pB-galactosidase from Planococcus sp. L4 was
expressed in E. coli and its Ky for ONPG was 2.9 mM;
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which is consistent with 3.4 observed in this study [17].
When the B-galactosidase from halotolerant Planococcus
sp. L4 was expressed in E. coli, it was resistant to high
concentrations of K* and Na" [17]. However, at high
concentrations, Na* and Ca?* ions act as inhibitors for
BGalP (Fig. 2). The enzyme activity was inversely
correlated with NaCl concentrations. CaCl, also inhibited
the activity of BGalP at the concentrations above 32 mM.
The result of this experiment also supported the previous
conclusion that the CI ion is not a BGalP activity
modulator. Previous studies also showed that Ca?* ion
inhibited the enzymes derived from Arthrobacter sp. B7
and sp. 32c [24,26]. It is consistent with the results of this
study, in which high concentrations of Na* and Ca?* ions
inhibited the BGalP activity (Fig. 2).
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Figure 2. Evaluating the effect of different concentration of NaCl
and CaCl, on enzyme activity. BGalP enzyme activity was
measured in serial dilutions of NaCl (1.3-87 mM) and CaCl, (1-
130 mM) were prepared in Z buffer. Ortho-Nitrophenyl (-
galactoside used as the substrate. BGalP activity was calculated
by multiplying ODa20 change in each minute by 380 (a constant
value related to the ortho-Nitrophenyl B-galactoside extinction
coefficient) and finally its normalization to the culture
supernatant volume added to the reaction. The experiments were
repeated three times and their mean was reported as U ml-! of the
culture supernatant.

BGalP hydrolyzed lactose with the Vimax of 0.001 IU ml?
and its half-saturation coefficient (Ky) was 124.4 mM in Z
buffer. Similarly, a higher Vimax (0.0028 1U mlt) and lower
Km (94.25 mM) observed in deionized water. This result
indicated that Z buffer ingredients could adversely affect
the activity of BGalP by decreasing the Vmax and
increasing the Kn (Fig. 3). Additional experiments
confirmed that the activity of BGalP enzyme in Z buffer
was lower compared to deionized water that may be due to
the presence of sodium (as Na;HPO4 and NaH;PO) in Z
buffer.

207




Mohammad Jalili-Nik, et al

© ZBuffer ® Deionized Buffer

0.003

0.0025 |

0.002

0.0015 |

BGalP IU mIt

0.001

0.0005

200

400 600 800 1000

Lactose (mM)

Figure 3. Comparing kinetic parameters of BGalP in Z buffer
and deionized water. Glucose concentration was estimated as an
indicator of lactose hydrolysis capacity of BGalP in Z buffer and
deionized water. Enzyme activity was reported as micromole
glucose produced per minute of reaction.

It was previously reported that MgCl; (10 mM), CaCl;
(10 mM) and MnCl; (10 mM) did not have any adverse
effects on the activity of the enzyme isolated from E. coli.
KCI and NaCl activated the enzyme at low concentrations
(250 mM) but acted as inhibitors at higher concentrations.
The enzyme activity decreased in the presence of 1 mM
concentrations of NiCl, CuSO4, ZnSO,4 and CaCl, [27].
Some of these ions do not occur in significant
concentrations in the cattle milk; therefore they were
exempted from the current study. BGalP, however, was
highly sensitive to the inhibitory effects of the Na and K
ions which are different from the enzyme extracted from E.
coli. Sequence alignment revealed only 10% identity
between these two enzymes, which may be the cause of
these variations in kinetics properties (Fig. 4).

Substrate specificity of BGalP

BGalP demonstrated relatively high affinity toward
ONPG (indicated by its low Ky) when compared to the
other pB-galactosidase enzyme extracted from different

sources (Table 1).

Table 1. Km valuse reported for p-galactosidase enzymes
originiated from different organisms. The assay was performed

using ONPG as the substrate.

Microorganisms Km (mM) Reference
BGalP expressed in Pichia pastoris 3.97 Current work
Lactococcus lactis 65.36 [28]
Planococcus sp. L4 29 [17]
Arthrobacter sp. B7 gene 15 0.4 [24]
Arthrobacter psychrolactophilus F2 2.8 [29]
Paracoccus sp. 32d 1.17 [30]
Pseudoalteromonas sp. TAE 79b 0.16 [31]
Flavobacterium sp. 4214 0.65 [32]
Guehomyces pullulans 17-1 3.3 [33]
Halomonas sp. S62 2.9 [34]

To reveal the substrate specificity of the enzyme, Kn
and Vmax of BGalP were determined using ONPG as the
substrate in presence of 5% lactose. Lactose increased the
Kmn for ONPG from 3.97 to 14.56 mM. In lactose-free
assay, at ONPG concentration of 0.8 mM, the enzyme
activity was 321 IU ml; which declined to 66 IU ml? in
presence of 5% lactose which could only be restored by
6.25 mM ONPG. This suggests that lactose may compete
with ONPG for binding to the BGalP catalytic site (Fig. 5).

These results attested that BGalP enzyme may have
higher affinity for binding to lactose than ONPG.
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Figure 4. Amino acid sequences alignment of the enzyme from Escherichia coli (BGAL-ECOLI) with BGalP (BGAL-PLASL); It was
performed using Geneious software suite. Identical and similar amino acids are indicated by black and gray backgrounds, respectively.
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Figure 5. Substrate specificity of BGalP. BGalP activity was
measured in serially dilution concentration of ONPG (0.4-25
MM) as the substrate in the reaction medium with or without 5%
lactose.

Effect of milk fat content on BGalP activity

As shown in Fig. 6, there was no significant difference
in enzyme activity values in the milk containing 0, 1.5, 2.5,
or 3% fat (p>0.05). This can be considered as an important
advantage for BGalP which is going to be used for lactose
hydrolysis in milks containing different levels of fat.

0.004
0.003 . 5
0.002
0.001
0 . . .

3% 25% 15% 0%
Milk fat concentrations

BGalP IU mI*

Figure 6. Effect of milk fat on enzyme activity. The enzyme
activity (IU min'?) was calculated as micromole(s) of glucose
produced per minute.

4. Conclusion

It seems that none of the naturally occurring -
galactosidase enzymes have all the ideal properties to be
used for production of lactose-free dairy products. The
main drawbacks include inappropriate optimum pH and
being adversely affected by the milk ingredients.
Interestingly, in this study, it was confirmed that at
naturally accuring concentrations of milk ingredients, the
fat content and metal ions, excluding potassium, did not
have any significant inhibitory effects on BGalP.

Appl Food Biotechnol, Vol. 5, No. 4 (2018)

Therefore, BGalP can potentially be used for production of
lactose-free dairy products. Its kinetic properties can also
be improved by removing the glycosylation or even protein
engineering techniques, if required.
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