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Abstract

Background and Objective: The shelf-life of acidophilus milk fermented by probiotic
culture Lactobacillus acidophilus is limited due to acidification caused by continued organic
acid formation at low temperatures. Increasing of titrable acidity in turn causes reducing of the
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total viable count of probiotic bacteria. To overcome acidification we suggested to use cold-
sensitive mutants of Lactobacillus acidophilus, with limited metabolism at low temperatures.
In order to facilitate the selection of cold sensitive mutants, it was decided to use Rifampicin
and Streotomycin mutations affecting thermostability of the key molecules of cell metabolism
the RNA polymerase and ribosome, respectively.

Material and Methods: Ultra violet mutagenesis was used to enhance the yield and diversity
of rifampicin and streptomycin resistant mutants of Lactobacillus acidophilus. To perform
negative selection of cold sensitive mutants, antibiotic resistant colonies replica plated and
incubated at 23°C. The growth rate, milk fermenting rate, titratable acidity were measured.

Results and Conclusion: Among tested resistant to either rifampicin or streptomycin clones
with frequency mean of 1.0%, ten mutants were isolated which have lost the ability to grow at
minimal temperature. Fermented with cold-sensitive mutants of Lactobacillus acidophilus
milks, during storage in the refrigerator, almost twice as long retained high amount of
probiotic bacteria and low titratable acidity as compared to the parent strain. Thus, direct
relationship between temperature sensitivity of the starter and shelf life of acidophilic milk
was confirmed. Rifampicin and Streptomycin resistant mutations are powerful tools for
selection of cold-sensitive dairy starters for preparing dairy fermented products with long
shelf-life.
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1. Introduction

Acidophilus milk is one of well-known dairy probiotic
products produced in many countries over a century as a
functional food. Acidophilus milk (or fermented milk)
contains live cultures of Lactobacillus (L.) acidophilus that
definitely has tremendous health benefits due to its high
probiotic properties. The shelf life of all type of fermented
milk products are limited due to continuation of metabolic
activity during storage in the cold, the titrated acidity
increases, which in turn leads to a drop in the number of
living cells [1-3].

The global food industry is constantly exploring new
approaches to improve product quality to fulfil consumers’
demand for good taste and texture for a long shelf-life,
therefore there is a need for constant search and deve-
lopment of new starter cultures with novel properties. Wild
type strains may have unique industrial properties, but to

fully employ their potential, specific actions are often
required. In other cases, it can be of interest to improve
strains which already have established industrial
applicability or to reduce/eliminate an unwanted property
[4-8]. The adaptation often used to make microorganisms
more tolerant to environmental stresses has temporary
effect. On the other hand, the genetically determined
changes have permanent features [9-11].

Modern high recombinant DNA technology would be
an ideal way to improve Lactic acid bacteria (LAB)
properties by restrictive food legislation and consumers
concerns with genetically modified food ingredients [12].
Thus, the main efforts to improve LAB strains for
industrial application are currently based on classical
methods for strain improvement such as random muta-
genesis, directed evolution and dominant selection [13,14].
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Random mutagenesis extensively used in the food industry
is based on the introduction of random mutations into the
genome of interest, characterization of a large library of
variants, and selection of strains with the desired property
for further use [15,16].

Mutations concerning processes of transcription and
translation may be promising for genetic improvement of
industrial characteristics of lactobacilli. It is known that
mutations causing resistance to rifampicin (rif) and
streptomycin (str) concern f subunit of RNA polymerase
and S12 protein from small subunit of ribosome,
respectively [17,18]. A characteristic feature of rif and str
mutations is high pleiotropic of phenotypic expression.
They are able to cause variant reading genetic information
in processes of transcription and/or translation practically
of every gene that results in simultaneous alterations of a
whole spectrum of features of bacterial cells: colony
morphology, growth rate, sensitivity to temperature,
requirements in growth factors, etc [19].

The microorganisms growth (especially in rich media)
at extreme temperatures limited by cold or heat sensitivity
of one or more key protein(s) are involved in global
cellular processes such as DNA replication, transcription,
translation or cell division [20]. The main cause of
deterioration of fermented milk products can be the
metabolic activity of starter cultures at low temperatures
[21-23]. The use of cold sensitive mutant starters with
metabolic activity restriction at low temperatures could be
an alternative solution for expanding shelf life of
fermented dairy products [13,14].

The aim of this work is to demonstrate mutational
restriction impact of L. acidophilus growth at low
temperatures by affecting the termostability of RNA
polymerase and ribosome, the key components of protein
synthesizing apparatus, could reduce acidification rate and
thus expand the shelf life of acidophilus milk.

2. Materials and Methods

2.1. The bacterial cultures
The L. acidophilus MDC 9626 was obtained from the
Armenian National Microbial Depository Center [24].

2.2. Media

Skimmed milk; LAPTg was made up of yeast extract,
10 g, peptone, 15 g, tryptone, 10 g, glucose 10 g, Tween,
Iml per 1 L of distillated water, for solid medium, 1.5 %
Bacto-agar was included, Tryptose agar (T-agar) [Merck,
Germany], Rifampicin and Streptomycin purchased from
“Serva” (Germany). Sodium phosphate buffer (pH 6.8).

2.3. Mutagenesis and selection of antibiotic resistant
mutants

LABs were grown at 37°C in LAPT(g to optical density
up to OD 0.6; cells were washed twice and harvested twice
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by centrifugation at 5000xg for 15 min and transferred in
phosphate buffer. Aliquots of cell suspensions (2 ml) were
transferred to sterile petri dishes and irradiated with UV-
light (254 nm) for 20 seconds [25]. Irradiated cells were
diluted ten fold in fresh LAPTg broth and grown at 37°C
for 4 h to permit 3- 4 division cycles. Cells were plated on
LAPTg agar containing 100 pg ml?t of appropriate
antibiotic and incubated at 37°C for obtaining antibiotic
resistant colonies.

2.4. Cold sensitive mutants screening

Cold sensitive (CS) mutants were screened by replica
plating of str and rif colonies and cultivating at 23°C. The
colonies,that did not grown on the replica plates
wereconsidered to be cold sensitive and picked up from the
master plate for further study [26].

2.5. Acidophilus milk preparation

Pasteurized milk was inoculated by 0.01% (w v?) L.
acidophilus CS starters and aliquots 50 ml aseptically
distributed in 100 ml bottles (one bottle for each sampling
time), then fermentation followed until the milk coa-
gulation. Fermented Acidophilus milks were kept at 5°C
for 28 days for the performance of microbiological and
chemical analysis at 7 day interval. At each sampling day,
one bottle was withdrawn and after vigorous shaking, 1ml
of its content placed into 9 ml of physiological solution,
appropriate dilutions were made and subsequently plated
onto LAPTg agar and incubated aerobically at 37°C. The
grown bacterial colonies were counted and multiplied by
dilution factor and the results expressed as CFU ml. The
remainder milk was used for determination of titratable
acidity.

2.6. Milk coagulation rate determination

Pasteurized skimmed milk samples were inoculated by
cold sensitive starters and incubated at 37°C, then tested
for coagulation every 30 min.

2.7. Growth rate

Overnight cultures diluted 20 times in fresh LAPTg
broth and growth at 37°C in 250 ml Erlenmeyer flasks,
with shaking at 200 rpm. The turbidity was measured at
ODeoo every 30 min.

2.8. Milk coagulation rate

Samples of sterile skim milk by volume 1.8 ml were
inoculated by 0.2 ml of overnight broth cultures and
incubated at 37°C, and checked for clotting every 30 min.

2.9. Titratable acidity assay

The titratable acidity of the fermented milk was
performed according to Thorner [23]. Titratable acidity
(°T) expressed as a percentage of lactic acid which was
neutralized with 0.1 N NaOH, until a pink color appeared
in the presence of phenolphthalein.
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2.10. Optical density (OD) assay
Bacterial suspension concentration was determined by
measuring ODsog in spectrophotometer.

2.11. Statistical analysis

Statistical analysis was performed using SPSS software
for windows (Version 16) (SPSS Inc. Chicago, IL and
USA). Mean and Standard deviation was used to describe
data. Fisher’s range test was used to determine differences
between tested groups. P<0.05 was considered as
significant. All experiments were replicated three times.

3. Results and Discussion

3.1. Selection of L. acidophilus CS starters by use of rif
and str mutations

After UV mutagenesis of L. acidophilus 486 colonies
formed on LAPTg agar with 100 pug ml? of rifampicin and
446 colonies with 100 pg ml™* of streptomycin were replica
plated on agar with the appropriate antibiotics and
incubated at 23°C. The colonies which are not growing on
replica plates were suggested as CS and picked from
master plates for further investigation. The frequency of
obtaining CS variants among Rif mutants was about 1.0%
and among Str about 1.1%. Five of Rif and five of Str
mutants, which didn’t grow at minimal temperatures for
serial passages, were isolated for further investigation.

The growth temperature range of L. acidophilus MDC
9626 CS mutants in LAPTg broth was investigated (Table
1).

As seen in table 1, due to rif and str mutations the
minimal temperatures of growth shift-up 4 to 9 degrees,
but the optimal growth temperature range of all CS
mutants remained unchanged.

0.6 --+--- MDC 9626

—e— CS-Rif4

Table 1. Determination of the temperature ranges of CS mutants
growth in LAPTg

Growth temteratures, °C

Strains T Topt T
MDC 9626 20 37-42 48
CS-Rif4 28 37-42 48
CS-Rif 6 24 37-42 48
CS-Rif 3 29 37-42 48
CS-Rif 7 24 37-42 45
CS-Rif 9 29 37-42 45
CS-Strl 29 37-42 45
CS-Str2 24 37-42 48
CS-Str3 28 37-42 48
CS-Str4 24 37-42 48
CS-Str5 29 37-42 48

3.2. The growth rate of L. acidophilus CS mutants in
LAPTg broth

The growth curves of CS cultures in LAPTg broth at
37°C are presented in Figure 1. From growth curves
presented in Figure 1, it can be seen that rif and str
mutations also affect the growth rate of L. acidophilus
MDC 9626. Thus, the mutants CS-Rif6 and CS-Str2 grow
significantly faster than parental strains when the CS-Rif3
and CS-Strl growth slows down remarkably. The other
growth rates were not significantly different from their
parental strains. The mutants CS-Rif3 and CS-Str5
accumulated 2-3 times more biomass than parental strains
which is very important for the starter industry.
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Figure 1. Kinetics of growth of L. acidophilus CS-cultures in LAPTg at 37°C
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3.3. The rate of milk coagulation by CS mutants

The rate of milk coagulation by CS starters was defined
at 37°C. The comparative time of milk coagulation rates
are presented on (Figure 2).

As it can be seen in Figure 2, some rif and str
mutations, along with cold sensitivity, also have a
significant effect on the rate of coagulation of milk. Of
particular interest are the mutants CS-Rif7 and CS- Strl
whose coagulation rate increased 1.3 and 1.4 times,
respectively. In the remaining mutants, the coagulation rate
either decreased or was slightly different from the parent
strain.

16
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08

relative fermentation rate (h)
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0 1 1 1 1 1

3.4. Investigation of milk fermentation temperature
profile of CS mutants

Milk fermentation by CS starters was studied at
temperature ranges of 20-48°C (Table 2).

As seen in table 2, the strains resistant to rifampicin
CS-Rif 4, CS-Rif 3, CS-Rif 9 and resistant to streptomycin
CS-Strl, CS-Str3 and CS-Str5 lost the ability to ferment
milk below 30°C. The remainder mutant were able to
coagulate milk at 24°C. Only one mutant, the CS- Rif9
could not ferment milk at 48°C.

Thus, the rif and str mutations shift-up the minimal
temperature of milk fermentation of L. acidophilus MDC
9626 by 4-9 degrees.

CS-Rif3 CS-Rif4 CS-Rif7 CS-Rif6é CS-Rif9 CS-Strl CS-Str2 CS-Str3 CS-Str4 CS-Str5

The dashed line represents the milk coagulation rate by wild strain taken as unit.

Figure 2. The relative milk coagulation rates by L. acidophilus CS starters at 37°C.

Table 2. Milk coagulation temperature ranges of CS starters

Temperature, °C

Strains 20 24 27 30 37 42 45 48
MDC 9626 + + + + + + + +
CS-Rif 4 - - - + + + + +
CS-Rif 6 - + + + + + + +
CS-Rif 3 - - - + + + + +
CS-Rif 7 - + + + + + + -
CS-Rif 9 - - - + + + + +
CS-Strl - - - + + + + -
CS- Str2 - + + + + + + +
CS-str3 - - - + + + + +
CS-Str4 - + + + + + + +
CS- Str5 - - - + + + + +

+ Coagulated, - Not coagulated
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3.5. Shelf life determination of dairy products

The live bacterial count and titratable acidity are the
main criteria for definition of fermented dairy probiotics
quality [21,27]. Fermented by CS starters acidophilus
milks were stored at 5°C and live microbial count and
titratable acidity were measured every week for 28 days
(Table 3). On the next day following storage, the titratable
acidy in the sample fermented with L. acidophilus was
higher (41°T) than others due to its ability to retains
metabolic activity upon cooling to 20°C, whereas in CS
mutants it ceases earlier at higher temperatures. On the 7th
day of storage, the changes in the amount of bacteria and
titratable acidity in the product fermented by L.
acidophilus already are visible. The mutants, which have
higher growth Tmin, have kept higher amounts of living
bacteria and have had lower acidification rate for 21 days
in cold storage.

At the end of storage, the viable count of CS-Rif3 and
CS-Str5  mutants dropped only 0.6 log and titratable
acidity reaches to 41°T and 49°T, respectively, whereas
the titer of wild bacteria dropped up to 4.2 log and
titratable acidity reached to 72°T.

As expected, the probability of selecting cold-sensitive
starters among the Rif and Str mutants were very high.
Thus, the UV induced mean yields of Rif and Str mutants
were 1.8x10° and 2.9x10°, respectively, whereas among
the both type mutants the frequency of obtaining CS
variants was approximately equal to 1.1x102 In these
cells, rif and str mutations alter the structure of cell key

components; B subunit of RNA polymerase and S12
protein of ribosome and turn them nonfunctional in
minimal temperature. Beside shift-up of growth
temperature, several rif and str mutations due to their
pleiotropy, cause other phenotypical changes such as
specific growth rate, milk fermentation rates, titratable
acidity and cells viability at low temperatures. It has been
shown that rif and str mutations also possess high
pleiotropy by interfering in a variety of physiological
processes of, Escherichia coli: rate of growth, the ability of
mutants to support the growth of various bacteriophages;
the ability to maintain the F' episome; interaction with
mutant alleles of other genes and technological properties
of LAB [19,28-32]. The use of rif and str mutations
significantly triggered the effectiveness of cold sensitive
mutants selection.

Experiments confirmed our prediction that dairy
starter’s metabolic activity at storage temperatures are the
main reason for short shelf-life of fermented dairy
products. Acidophilus milk fermented by the use of cold
sensitive  starters, restricted metabolism at low
temperatures and has had longer shelf life and contain
higher amounts of living probiotics.

The rif and str mutations can be used not only for
expanding shelf life of acidophilus milk, but also for
improved technological characteristics of lactic acid
bacteria. The high rate of growth and high biomass
accumulation are very important in dairy starters and
probiotics manufacturing.

Table 3. The nature of changes in the number of living cells and titratable acidity in acidophilic milks prepared using CS starters at 5°C

Days of Storage
1 7 14 21 28
Strains CFUmIt T CFUmIt T CFUmIt T CFUmI* °T CFUmIt °T
L.acidophilus 17x10 41 12x10 49 24x10 56  11x10 68 gix10 72
CS-Rif4 18x10 38 14x10 42 72x10 4  24x10 49 gax10 6l
CS-Rif 6 23x100 36 18x10 4 16x10 44  76x10 48  76x10 62
CS-Rif3 38x10 30 37x10 31  13x10 31 35x10 32 e4axio 41
CS-Rif7 19x10 36  14x10 4  12x10 45  62x10 51 g2x10 63
CS-Rif9 17x10 3 13x10 36  72x10 40 14x10 48  74x10 62
CS-Strl 13x10 36  12x10 38  61x10 39 24x10 51 gax10 59
CS-Str2 23x100 3 19x10 38  77x10 4 17x10 53 77x10 62
CS-Str3 18x10 36  14x10 39  13x10 4  e4x10 58 g9ax10 67
CS-Str4 20x100 31 13x10 38  g2x10 4 24x10 52 74x10 64
CS-Str5 35x100 31  35x10 32  12x10 35 34x10 36  gix10 49
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4. Conclusion

There is a relationship between cold-sensitivity and
maintenance of bacterial viability and acidity of fermented
probiotic acidophilus milk during cooling and cold storage.
Shelf life of acidophilus milk fermented by CS mutants
determined by viable count of probiotic bacteria and
titratable acidity is significantly larger than the L.
acidophilus parental strains. In order to extend the shelf-
life of fermented dairy products, rif and str mutations can
be used to improve the efficiency of selection of cold-
sensitive starters. These mutations can also be used for
intensification of milk fermentation process at optimal
conditions.
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