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Abstract:  

SARS-CoV-2 emerges as a new threat to the life of global population. The high 

infectivity and spreading rate of the disease make it a pandemic with no such specific 

drug discovered yet. Considering the high spreading rate of the disease, there is an 

urgent need for selective anti-SARS-CoV-2 agent. SARS-CoV-2 main protease is an 

important target involved in transcription of the viral RNA, inhibition of which may lead 

to virucidal action. Repurposing strategy proved some antivirals to be effective against 

Mpro, but safety issues are of concern. Identifying lead and computational approaches 

are the best to consider. The present study incorporates three standard anti-HIV agents 

Lopinavir, Ritonavir, and Indinavir to undergo pharmacophore modeling. The initial 

modeling resulted in the selection of few test compounds considering the low RMSD as 

observed in Zinc database. The Rest of the compounds were designed from the 

pharmacophoric features of the newly developed model. 20 compounds were subjected 

to molecular docking. The docking results showed that, compound 20 revealed the 

highest binding energy (-8.6 kcal/mol), which is even lesser than all the three standards. 

The other compounds 3, 4, 5, 11 and 19 also responded well to the docking study. These 

six compounds were further evaluated for their drug-likeness and ADME properties to 

raise the acceptance level of the lead(s). Further computational study included the 

Molecular-Dynamic simulation of the compound 20, to ensure the least variations 

throughout the simulation analysis. The above sequential computational study provides a 

hypothetical guideline to optimize the lead as effective anti-SARS-CoV-2 agent. 
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1. Introduction 

2019 novel Coronavirus outbreak first began from the 

Wuhan province of China, in December 2019[1], 

causing Coronavirus disease 2019 (COVID-19). Within 

a very short span of time, it extended towards other parts 

of China and also to other countries of the world and 

engulfed a large number of populations, increasing the 

rate of morbidity day by day. Novel Coronavirus belongs 

to the family of Coronaviridae of order Nidovirales and 

genus Coronavirus [2,3]. the rapid global spreading of 

the disease, its increased rate of infection, 

hospitalization, and morbidity, compelled World Health 

Organization (WHO) to declare COVID-19 as a 

pandemic on March 11, 2020 [4]. Major symptoms of 

this disease include high fever, cough, muscular fatigue, 

pulmonary fibrosis, and alveolar cell injury progressing 

towards pneumonia. The Coronavirus mainly binds to 
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Angiotensin-Converting Enzyme 2 (ACE-2) of the host 

body, which is mainly expressed by the alveolar 

epithelial cells [5]. All these may lead to respiratory 

distress, chest pain, breathlessness and sometimes may 

cause silent hypoxia [6], leading to death. As of August 

25, 2020, more than 23 million cases were confirmed, 

and over 810000 death cases were reported worldwide 

[7]. The International Committee on Taxonomy of 

Viruses (ICTV) renamed the previous name of novel 

Coronavirus (2019-nCoV) to Severe acute respiratory 

syndrome Coronavirus 2 or SARS-CoV-2 [8,9]. 

In spite of extensive research work, there is no effective 

medication developed to date to combat COVID-19. 

Researchers including medicinal chemists are tirelessly 

searching for potential molecules that can be developed 

as anti-SARS-CoV-2 agents. Owing to the current 

emergency situation of the pandemic and the increased 

rate of confirmed cases every day, there is an urgent 

need for the development of drug candidates against this 

virus, within a limited span of time. Unavailability of the 

appropriate treatment procedure and shortage of time 

compelled the scientists to focus on the drug repurposing 

approach, of previously FDA-approved drugs of other 

pharmacological categories [10,11]. Amongst all the 

drug targets of SARS-CoV-2, one of the most important 

targets is the Coronavirus main protease (Mpro), also 

called 3-Chymotrypsin like protease (3CLPro), mainly 

involved in the cleavage of two polyproteins PP1a and 

PP1ab to produce various functional proteins, thus 

mediating viral replication and transcription [12-14], 

therefore, inhibiting this enzyme can be a successful 

strategy to prevent COVID-19. Current situations cannot 

possibly warrant the development of a safe drug 

molecule within a short time, which can combat 

COVID-19. Main protease of SARS-CoV-2 is one of the 

most important targets, inhibition of which can leads to 

virucidal actions.  

Various antiviral agents have been successfully 

employed and proved to be effective against Mpro by in-

silico studies. Shah B et al, selected 61 antiviral agents 

and performed molecular docking on five Mpro proteins, 

and found that Lopinavir interacted with all five 

proteins, whereas Ritonavir, and Indinavir showed 

promising binding affinities with four out of five 

proteins [15]. Various other studies also proved that 

Lopinavir, Ritonavir, and Indinavir can be potential drug 

candidates in targeting Mpro. So, in the current study, 

we considered these three anti-HIV drugs (protease 

inhibitors) as standards for developing new derivatives 

and searching new chemical entities, based on 

pharmacophore modeling, against Coronavirus Mpro.  

the alarming situations of the pandemic and immediate 

requirement for an active anti-SARS-CoV-2 agent, urged 

the use of computational chemistry and virtual screening 

as important tools for screening a large number of active 

compounds from the databases to evolve candidates 

suitable against COVID-19. This initiative could help 

accelerating the global efforts to fight against current 

outbreak. 

Pharmacophores are the important functional groups or 

structural features on a molecule, responsible for optimal 

interactions with the target proteins and are responsible 

for the observed therapeutic effect. Pharmacophore 

modeling includes the 3D spatial arrangement of the 

functional groups required for its activity. In this study, 

ligand-based pharmacophore modeling [16] was carried 

out, by extracting the common pharmacophoric features 

present in Lopinavir, Ritonavir, and Indinavir, essential 

for interacting with the target (Mpro). Molecular docking 

methodology is one of the in-silico methods widely used 

to screen several compounds for their binding affinity 

towards a specific macromolecule [17]. Docking predicts 

the most preferred orientation of a ligand, both 

geometrically and energetically (best fit) within the 

active site of a protein. This allows more optimized 

prediction of binding modes, conformations of the 

ligands within the binding site of the protein and thus 

enables accurate prediction of the binding pattern, 

describing the stability of complexes and estimating the 

strength of binding [18]. The procedure of docking 

involves three components namely, identification of the 

binding site of the protein, search algorithm, and scoring 

functions. Search algorithm assess all the possible 

orientations of ligands for appropriate binding within the 

binding site of the receptor (protein) and scoring 

function determines the receptor-ligand binding affinities 

via various mathematical functions, thus predicting 

binding energies of the complex, lower the binding 

energy, more stable is the complex with correct binding 

mode. It is observed that several virtually screened 

compounds, even after receiving a positive nod through 

docking often fail to become an eligible clinical 

candidate due to poor pharmacokinetic profile and 

noncompliance of the safety and drug-likeness 

parameters. Therefore, drug-likeness and prediction of 

Absorption, Distribution, Metabolism, and Excretion 

(ADME) is an important aspect to consider prior to 

developing the novel active molecules synthetically. 

Drug-likeness is an important facet to be accounted for 

during lead optimization.  It describes whether the ligand 

comply all the criteria to become ‘drug-like’. It basically 

reflects the bioavailability of a drug, and how a hit 

molecule can be successfully developed to a lead 

compound, reducing the adverse drug reactions and can 

successfully reach the market, in a cost-effective 

manner. It is often observed that a compound with a 

greater affinity towards a macromolecule, suffers from a 

poor pharmacokinetic profile. Therefore, during the early 

drug discovery, if a virtual pharmacokinetic screening 

can be done, it can curtail down a huge expense incurred 

by the company. Absorption, Distribution, Metabolism, 

Excretion (ADME) prediction study not only looks after 

the economy but also enhances the development of the 

safest drug at an explosive pace. Thus early information 
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regarding drug-likeness and pharmacokinetic profile 

using various computational tools in lead optimization 

seems to be the best strategic and economic ways to opt 

for, at an explosive pace. For drug-likeness, Lipinski’s 

Rule of 5 [19] and Veber’s rule [20] were considered. in 

addition, ADME studies generate certain attributes of a 

bioactive compound, like; Blood-brain barrier (BBB) 

permeability, Gastrointestinal (GI) permeability, skin 

permeability, Cytochrome P450 inhibition, and also 

some structural alerts (if present). Violation of any of the 

parameters ousted the respective compound from the 

pool of active compounds. 

This in-silico study focused on developing and finding 

some novel protease inhibitors against SARS-CoV-2 

main protease, by ligand-based drug designing (LBDD), 

considering Lopinavir, Ritonavir, and Indinavir as 

standard compounds, using molecular docking, drug-

likeness, and ADME profile. 

 

2. Materials & Methods 
 

Owing to the need for the development of new protease 

inhibitors, Lopinavir, Ritonavir, and Indinavir were 

taken for pharmacophore modeling on online webserver. 

A huge number of hits produced which were screened on 

the basis of root mean square deviation (RMSD) values. 

Ten such compounds (1-10) were extracted from the 

Zinc database [21]. Another set of ten compounds (11-

20) were developed considering the common 

pharmacophoric features of the standard compounds.  

 

2.1. Pharmacophore modeling and database 

searching  

 

For pharmacophore modeling, we used an online 

webserver named PharmaGist [22]. At first 3 standard 

molecules, Lopinavir, Ritonavir,Indinavir,and also the 

co-crystal ligand Boceprevir were drawn in ChemSketch 

(ACD 2012: Advanced Chemistry Development, 

Toronto, Ontario, Canada) and converted to mol2 file 

using Open Babel software[23], and imported into the 

webserver, which generates the common 3D features of 

the molecules. The output was further transferred into 

another webserver called Zinc Pharmer[24], which 

utilizes millions of chemical compounds in the Zinc 

database, in search of compounds with nearly the same 

pharmacophoric features. Around 99 total hits were 

generated having nearly the same pharmacophoric 

features with RMSD ranging from 0.32 – 0.75. To 

ensemble the structural diversity among various 

molecules generated in the Zinc database, we sorted out 

a set of 10 compounds having RMSD< 0.55, starting 

from 0.32. The lower the RMSD cut-off values 

compared to input pharmacophores, the higher is the 

similarity between the pharmacophoric features of the 

compounds and the standards. A recent article also 

suggested the selection of molecules with a cut-off 

RMSD around 0.5, matching with the input 

pharmacophores [25]. Analysis of the common 

pharmacophoric features of the 3 standards was done 

using PyMol molecular viewer [26]. 

 

2.2. Target (protein) modeling  
 

Crystal structure of Novel Coronavirus Mpro protein 

was procured from the Protein Data Bank (PDB, 

http://www.rcsb.org), having PDB entry: 7BRP, with 

1.80 Å resolution and complexed with a protease 

inhibitor, Boceprevir (co-crystal).This gives the rationale 

for selecting this protein structure, as we are also aiming 

to develop novel protease inhibitors against SARS-CoV-

2. The protein was modeled by MGL Tools 1.5.6 

(Molecular Graphics Laboratory, The Scripps Research 

Institute, La Jolla, USA), run in an HP system with 

Windows 7, 64-bit OS, 4GB RAM, and a 1.7 GHz 

processor. To rule out the biasness of the ligand-receptor 

interactions during docking, the protein molecule was 

optimized by energy-minimization using Swiss PDB 

viewer (SPDBV 4.1.0, Swiss Institute of Bioinformatics) 

[27]. The energy-minimized protein in pdb format was 

then subjected to Python Molecular viewer. To preclude 

the interference of water molecules and the co-crystal, 

the protein was desolvated and made ligand-free. Bond 

orders were assigned, polar and missing hydrogens were 

merged including the addition of partial atomic charges 

by the Gasteiger method. Initially, the protein was in 

‘pdb’ format which was further converted to ‘pdbqt’ 

extension by addition of charges (q) and changing the 

atom type to Autodock4 (t) compatible mode. 

 

2.3. Ligand (small molecules) modeling 
 

All the compounds (1-20) were drawn using ACD 

ChemSketch freeware. 2D compounds were converted to 

pdb (protein data bank) using PRODRG web-server [28]. 

Then using MGL tools, the ligands were prepared by 

adding Gasteiger partial atomic charges (q) to every 

atom and changing the atom type to Autodock4 (t). All 

the ligands were subsequently made into the ‘pdbqt’ 

form. The standard compounds were also processed in 

the same manner.  
 

2.4. Molecular docking and analysis 
 

Molecular docking study was performed in a Windows 7 

based HP system, using Autodock Vina [29]. A grid 

spacing of 1 Å and x, y, z dimensions of 24 points each, 

had been considered as the primary set-up for the 

docking procedure. Grid box resolution was set at x, y, 

and z centers of 24.729, -13.654, and 17.268 

respectively.  Docking generates 9 significant 

conformers for each docked compound, of which the 

least energetic conformer with the best docking pose, 

considered to be most active and subjected to subsequent 

studies. 

https://creativecommons.org/licenses/by-nc/4.0/legalcode
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Docking poses of every ligand-receptor complex were 

visualized using PyMol molecular viewer, and the 2D 

interactions between the active conformer of the ligand 

and the protein were observed using BIOVIA Discovery 

Studio visualizer (BIOVIA, DassaultSystèmes, 

Discovery Studio Visualizer, 20.1.0, San Diego, CA, 

USA, 2020). Interactions of the ligands with the active 

site residues and their optimized binding poses 

determine the activity of each compound as a potential 

Mpro inhibitor. 

 

2.5. Drug-likeness studies and ADME profiling 

 

The current study focuses on evaluating drug-likeness 

parameters of all the compounds, based on 2 established 

rules namely, Lipinski’s Rule of 5and Veber’s rule. All 

the compounds were checked for their drug-likeness by 

generating data pertaining to molecular weight, number 

of hydrogen bond donors/acceptors, polar surface area, 

number of rotatable bonds, partition coefficient, etc. 

Violation of any of these two rules was kept as rejection 

criteria, thus proving to be ineffective against SARS-

CoV-2 main protease. Drug-likeness studies were 

performed using an online web-server named, Swiss 

ADME (Molecular modeling group, Swiss Institute of 

Bioinformatics, Lausanne, Switzerland) [30]. 

Computer-aided drug designing (CADD) is the only way 

to determine the pharmacokinetic studies of every 

ligand, much early in the lead optimization stage, and 

this in-silico study focuses on few ADME parameters 

that all the active molecules should qualify to determine 

the most active compounds amongst all the actives 

sorted out during the primary screening. In the current 

research, this ADME profiling is the secondary 

screening, whereas the primary screening of actives was 

based on docking score and drug-likeness. ADME and 

toxicity studies were performed in the Swiss ADME 

online webserver. 

 

2.6. Molecular Dynamics (MD) simulation study 

 

MD simulation study of the most active compound was 

performed using LARMD web-server 

(http://chemyang.ccnu.edu.cn/ccb/server/LARMD/) [31]. 

The PDB structures of the protein-ligand docked 

complexes were extracted from PyMol viewer. Then 

these were fed into the LARMD server, keeping water as 

an explicit model and MD time as 1 ns (nanosecond) or 

1000 ps (picosecond). The safest and most active 

molecule selected after primary and secondary 

screening, was initially subjected for 1000 ps MD run, to 

determine the stability of the ligand-receptor complex, 

with an intention to increase the MD runtime if the MD 

trajectories were not stabilized within the 1000 ps run. 

All the necessary input files were incorporated and the 

reaction coordinates were portrayed. A definite task 

name and password were set and then the job was 

submitted for the simulation study. The most active 

compound found out by docking, ADME, and drug-

likeness properties was directed towards MD simulation 

using trajectory analysis and energy calculations 

(MM/PBSA and MM/GBSA). The calculation of 

binding free energy (∆GbindMM/PBSA and MM/GBSA) 

was done using enthalpy or total energy of the system 

(∆E), and solvation entropy (T∆S) of the system. For the 

MD study, the ligand-receptor interactional binding 

mode (Int_mod) module was selected for simulation. 

The force fields of all nonstandard residue(s) were 

generated. The RMSD and radius of gyration (Rg) of 

active compound along with the simulation trajectory 

were calculated and analyzed. RMSD, Rg, and Root 

mean square fluctuation (RMSF) were analyzed in the 

same moduleof LARMD using the AMBER16 program. 

 

3. Results and Discussion 
 

This entire computational study encompasses molecular 

docking, drug-likeness, ADME studies, and MD 

simulation of the most active lead. 2D structures of all 

the 20 compounds considered for this in-silico study are 

presented in Table 1. 

 

3.1. Pharmacophore modeling study 

 

The pharmacophore modeling study was performed 

using Lopinavir, Ritonavir, Indinavir, and Boceprevir 

molecules. After performing the pharmacophore 

modeling of 3 standard compounds and the co-crystal 

ligand Boceprevir, the common pharmacophoric features 

evolved out of the study include, 2 H-bond donors, 2 

aromatic domains, and 1 hydrophobic region, as shown 

in Figure 1. 

 

 
 

Figure1. Common pharmacophoric features of 3 standard protease 

inhibitors Lopinavir, Ritonavir, and Indinavir, and the co-crystal ligand 

Boceprevir, obtained out of pharmacophoric modeling. 

 

3.2. Molecular docking and drug-likeness studies 

 

Docking study generates divergent poses of ligands in 

which the pose with the best affinity (lowest in terms of 

binding energy) was chosen as the best pose and 
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subsequently processed for visualization. In a pool of 20 

compounds considered for the study, the first 10 

compounds were extracted from the Zinc database and 

the rest (10 compounds) were designed based on 

pharmacophoric features of the standards taken for the 

study. The highly active compounds were identified 

through multiple screening. Primary screening of all the 

20 compounds was done considering the docking score 

and drug-likeness parameters. Docking study generates a 

divergent poses of ligand in which the pose with the best 

affinity (lowest in terms of energy) was chosen as the 

best pose and subsequently processed for visualization. 

Docking process was validated prior to initiating the 

docking study for individual compounds. At first, the co-

crystal, Boceprevir was removed from the X-Ray 

crystallographic structure of the protein (PDB id: 7BRP) 

and redocked within the active site of the protein. 

Boceprevir is redocked and used as an external ligand in 

molecular docking study. 3 standard molecules were also 

docked and the results are mentioned in Table 2. 

Docking proves close interaction and good binding 

affinity of the co-crystal conformers with the active site 

residues of the protein. RMSD value between the docked 

active conformer and the X-Ray crystallographic 

conformation of the co-crystal was observed to be < 

1.3Å. According to the literature review, RMSD during 

docking validation was reported to be around less than 3 

Å in one article [32] and less than 1.3 Å in another [33].  

The lesser the RMSD, the greater will be the docking 

accuracy, thus our docking protocol was successfully 

validated being well within the acceptable range, using 

Autodock Vina. 

Docking reveals that the binding interaction of all the 

compounds with the active site residues of Mpro protein 

was well acceptable. The active site analysis divulged 

the essential composition of amino acids participating 

with the ligand-binding including Thr-25, His-41, Met-

49, Phe-140, Leu-141, Cys-145, His-164, Met-165, Glu-

166, Pro-168, Arg-188, Gln-189. The conformer with the 

least energy of all the docked compounds as generated 

by Autodock Vina was taken into consideration. Apart 

from this interaction study, the drug-likeness study was 

also conducted, to ensure whether the compounds are 

following the Lipinski’s rule and Veber’s rule, which a 

compound requires to comply with to become bioactive. 

Lipinski’s Rule of 5 states that for a compound to be 

pharmacologically active, it should qualify certain 

features as set by those scientists, Molecular Weight < 

500 dalton, octanol-water partition coefficient (Log P) < 

5, Hydrogen (H) bond donors < 5 and H-bond acceptors 

< 10, while Veber’s rule suggests that a compound, 

before entering into drug discovery pipeline, should 

possess Rotatable bonds ≤ 10, Topological polar surface 

area (TPSA) ≤ 140 Å
2
, and the sum-total of H-bond 

donors and acceptors ≤ 12. The results fetched from 

docking analysis in terms of binding energy (Kcal/mol) 

and the drug-like properties were presented in Table 2. 

Considering the structural diversity and the drug-like 

properties of standard molecules, screening of active 

compounds was carried out by setting standard 

protocols. For a compound to be active, there should be 

‘No violation’ in both the Lipinski’s rule and Veber’s 

rule, the lower limit set for the summation of H-bond 

donors and acceptors is not less than 8, and the binding 

energy (BE) should lie within the range -7.0 to -9.0 

Kcal/mol. The results as presented in Table 2 indicate 

that 10 out of 20 compounds (3, 4, 5, 6, 8, 11, 15, 18, 19, 

and 20) followed the protocol without any violation. 

 

3.3. In-silico ADME analysis 

 

This virtual assessment was further potentiated by a 

secondary screening of selected compounds with ADME 

studies performed in online webserver SwissADME. 

One of the parameter considered for the ADME profiling 

is Blood-brain barrier (BBB) permeability, indicates 

toxic attributes. Though protease inhibitors are not 

required to penetrate BBB as the central nervous system 

(CNS) is not their primary site of action, any compounds 

with the peripheral target, having BBB permeability can 

cause unwanted CNS-related toxicities [34]. Molecules 

having high Gastrointestinal (GI) permeability can 

penetrate the intestinal lining quite easily, making the 

drug orally bioavailable and it can easily reach the site of 

action (Coronavirus main protease), crossing the viral 

membrane. The more negative the Skin permeability (log 

Kp) value, the lesser the ability of the compounds to 

penetrate the skin membrane [35]. Metabolic 

biotransformation is an important phenomenon that 

safely eliminates the drug from the body, reducing 

adverse effects due to over-accumulation of the drug 

inside the body which the  Cytochrome P450 (CYP450) 

isoenzyme family play a major role. Inhibition of 

CYP450 enzymes may lead to lowering metabolic 

activity, thus causing drug-drug interactions [36]. 

Accumulation of the drug or its metabolites may occur 

due to decreasing in the clearance values leading to 

several toxicities in the body [37]. To make the study 

even more extensive, structural alert data was generated, 

which can readily identify the portion in a molecule that 

may cause some unwanted effects in-vivo. Pan-assay 

interference compounds (PAINS) [38] alert and a 

structural alert called Brenk alert are two extraordinary 

parameters that scrutinize the designed compounds in 

such a way that any notable area can be readily 

eliminated at the budding stage of drug discovery. 

PAINS are mainly the promiscuous compounds that 

show binding affinity with numerous targets irrespective 

of the specified target and give rise to false positives and 

erratic results. Brenk alerts are the structural alerts that 

may give rise to metabolically unstable and reactive 

fragments as the compound breaks inside the body, 

leading to toxicities [39]. 

https://creativecommons.org/licenses/by-nc/4.0/legalcode
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All the 10 primarily screened compounds were further 

tested for the predictive ADME profile to ensure their 

safety. certain criteria were also kept for a compound to 

qualify the test. The compounds should possess aqueous 

solubility (Log S) either soluble or moderately soluble, 

have high GI absorption, impermeable to BBB, skin 

permeability (Log Kp) not less than -8 cm/s, should not 

inhibit at least 3 or more CYP450 isoenzymes, and last 

but not the least, ‘No’ PAINS and Brenk alerts. 

Compounds 3, 4, 5, 11, 19, and 20 were found to be the 

safest of all, as the data generated from the ADME study 

lie well within the safe limit. Compound 20, though 

having moderate aqueous solubility, does not show 

inhibition of four CYP450 isoenzymes, thus proved to be 

safer. ADME studies of 10 primary active compounds 

are shown in Table 3. 
 

3.4. Analysis and interaction study of safe and 

effective molecules 
 

In this study, 20 compounds were primarily screened by 

molecular docking and drug-likeness studies. All the 

actives coming out of this primary screening were again 

forwarded into a secondary screening of ADME studies. 

The overall outcome of the study suggests compounds 3, 

4, 5, 11, 19, and 20 be the safest and effective lead 

molecules against SARS-CoV-2 Mpro. 

The docking pose within the Mpro active site, the 2D 

interactions, and the molecular surface view of 

compound 3 were shown in Figure 2(a), 2(b), and 2(c) 

respectively. Compound 3 was obtained from the Zinc 

database with Zinc Id: 08586210. This compound shows 

strong H-bonding with Glu-166 and pi-pi interactions 

with Met-165, Glu-166, Cys-145, His-41, and Met-49. 

Compound 3 shows binding energy of -7.0 Kcal/mol. 

Figures 2(d), 2(e), and 2(f) represent the docking pose, 

2D interactions and molecular surface view respectively 

of compound 4, which was also fetched from the Zinc 

database having Zinc Id: 12813413. It shows appreciable 

interactions with various active site residues of the 

protein, H-bonding with His-41, and pi-pi stacking with 

Met-49, Met-165, and Thr-25. Figure 2(g), 2(h), and 2(i) 

represent the docking pose within the active site, 2D 

interactions and molecular surface view respectively of 

compound 5, with Zinc Id: 12813418. 

 

 
 

Figure 2. Docking poses of compounds 3, 4, and 5: (a) Stereoview of best conformer of compound 3 within the active site of Mpro, superimposed on 
the native co-crystal; (b) 2D interactions of compound 3; (c) Molecular surface view of compound 3; (d) Stereoview of best conformer of compound 

4 within the active site of Mpro, superimposed on the native co-crystal; (d) 2D interactions of compound 4; (f) Molecular surface view of compound 

4; (g) Stereoview of best conformer of compound 5 within the active site of Mpro, superimposed on the native co-crystal; (h) 2D interactions of 
compound 5; (i) Molecular surface view of compound 5.  
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This compound also fits well within the binding site 

domain of the Mpro protein, showing H-bonding with 

Gln-192 and pi-pi interactions with His-41, Met-49, 

Met-165, and Pro-168. It is interesting to note that, 

compounds 4 and 5 are isomeric in nature, 4 being the S 

isomer and 5 being the R isomer. These 2 compounds 

differ slightly in their docking binding energies, 

compound 4 having -7.5 Kcal/mol, whereas -7.3 

Kcal/mol was obtained for compound 5S isomer of the 

compound is slightly more active than the R isomer 

because of having less energy. 

Among the compounds which are not from the Zinc 

database, created considering the pharmacophoric 

features of all the standard compounds, compound 11 

possesses good binding interactions, including H-

bonding with His-41, Met-49, Cys-145, Glu-166, and pi-

pi interactions with Thr-25, Met-165. It shows binding 

energy of -7.1 Kcal/mol. Docking pose within the active 

site domain, 2D interactions and molecular surface view 

of compound 11 is presented in Figure 3(a), 3(b) and 

3(c) respectively. Another one is compound 19, whose 

binding energy is -8.2 Kcal/mol. This compound exhibits 

hydrogen bonding with Glu-166 and pi-pi interactions 

with Pro-168, Met-49 and Met-165. Docking pose, 2D 

interactions and molecular surface view of compound 19 

were shown in Figure 3(d), 3(e), and 3(f) respectively. 

Compound 20 exhibits the strongest interaction with the 

principle amino acid residues of the main protease 

receptor, having a binding energy of -8.6 Kcal/mol, 

which is lower than all the 3 standards considered for 

this study. It shows H-bonding with His-41, Cys-145, 

Phe-140, Glu-166, and pi-pi stacking interactions with 

Leu-141, Met-165. Docking pose within the active site, 

2D interactions and molecular surface view of 

compound 20 were shown in Figure 3(g),3(h), and 3(i) 

respectively. The in-detail scanning of the binding 

pattern of these pharmacophore-derived compounds with 

SARS-CoV-2 Mpro accorded that pi-pi stacking and 

hydrogen bonding interactions are the main arsenals for 

binding. 

 

 
 
Figure 3. Docking poses of compounds 11, 19, and 20: (a) Stereoview of best conformer of compound 11 within the active site of Mpro, 

superimposed on the native co-crystal; (b) 2D interactions of compound 11; (c) Molecular surface view of compound 11; (d) Stereoview of best 
conformer of compound 19 within the active site of Mpro, superimposed on the native co-crystal; (d) 2D interactions of compound 19; (f) Molecular 

surface view of compound 19; (g) Stereoview of best conformer of compound 20 within the active site of Mpro, superimposed on the native co-

crystal; (h) 2D interactions of compound 20; (i) Molecular surface view of compound 20.  
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3.5. MD simulation analysis of active compound 

 

After a detailed screening of the active compounds by 

docking, drug-likeness and ADME studies, 6 compounds 

were found to be highly active and safer lead molecules 

targeting Coronavirus Mpro. Compound 20 ranked 

highest in the list possessing best binding affinity, safety 

and drug-likeness properties. Hence, compound 20 was 

selected for Molecular Dynamics study and same 

analysis was carried out on Coronavirus Mpro protein. 

Using conventional molecular dynamics, the binding 

free energy (∆Gbind) calculations were carried out by 

MM/PBSA (Molecular Mechanics/ Poisson Boltzmann 

Surface Area) and MM/GBSA (Molecular Mechanics/ 

Generalized Born Surface Area) methods. These 

calculations give an estimate of overall binding energy 

between ligand and the receptor and thereby predicting 

the stability of the complex by a physics-based empirical 

scoring function. For compound 20, binding free energy 

(∆Gbind) as calculated by MM/PBSA was -9.94 Kcal/mol 

and by MM/GBSA was -16.15 Kcal/mol. The 3 standard 

compounds were also subjected to binding free energy 

calculation. The ∆Gbind as calculated by MM/PBSA for 

the compounds Lopinavir, Ritonavir and Indinavir was 

found to be -17.64 Kcal/mol, -21.78 Kcal/mol and -9.72 

Kcal/mol respectively. However, for these three 

compounds, , the values obtained from determining the 

∆Gbind through MM/GBSA were -14.70 Kcal/mol, -23.30 

Kcal/mol and -4.92 Kcal/mol. While comparing the 

binding energies, Ritonavir is holding better than the 

other two standards as well as compound 20, but the 

pose with which the compound 20 is found within the 

binding domain is well acceptable. Moreover, in 

comparison with the other standard, Indinavir, 

compound 20 is having a greater ∆Gbind value. 

In order to assess the stability and the dynamic behavior 

of the ligand-receptor complex of compound 20 on Mpro 

protein, RMSDof ligand-receptor complex, Rg and 

RMSF were determined. MD simulation study was 

performed for 1 ns or 1000 ps, in water solvated state 

with Int-mode, using LARMD webserver. The stability 

of MD trajectory was confirmed using RMSD and Rg 

calculations. It was observed that the MD trajectory is 

almost stable without any noticeable major deviations in 

RMSD, Rg, and RMSF, in 1000 ps MD runtime, thereby 

there is no requirement for further increment of MD 

time. RMSD of protein-Cα atoms and the compound 20 

(ligand) lies well within the range of 0-1.5 Ǻ and 0 - 2.0 

Ǻ respectively, which is well acceptable for small 

molecule protease inhibitors. The RMSD curves of 

receptor and the ligand are nearly superposed, thereby 

predicting the stability of the complex, and the ligand is 

not dissociated throughout 1 ns MD simulation analysis. 

Moderate and stable Rg fluctuations were observed 

between 24.9 – 25.4 Ǻ. Recognition of the ligand along 

with the migration process potentially influences the 

internal atomic fluctuations of the Mpro protein. Thus 

RMSF of each residue was observed by means of RMSF 

plot. Regular and routine fluctuations of residues were 

observed for Mpro-compound 20 complex showing 

fluctuations between 2 – 12 Ǻ, fluctuations being the 

greatest between 200 – 400 residue points. Structural 

flexibility of the Coronavirus Mpro protein and the 

stability of compound 20 within its active site were 

proved and validated using MD simulation analysis. This 

investigation proved that among all the compounds 

selected for this study, compound 20 is the most active 

and stable within the binding cavity of the Mpro protein. 

RMSD, Rg and RMSF plots for compound 20 is 

depicted in figure 4. 

 

 
 
Figure 4. MD simulation study for compound 20 complexed with 
Mpro protein: (a) RMSD plot of the ligand-receptor complex; (b) Rg 

plot of the ligand-receptor complex; (b) RMSF plot of the ligand 

receptor complex. 

 

4. Conclusion 
 

The drug discovery process of SARS-CoV-2 infection is 

still in its budding stage.  Target specific lead 

identification is yet to be done. the majority of present 

drugs for COVID-19 preferentially act on viral main 

protease, therefore with the strategic application of 

computational study, like molecular docking, drug 

likeness, and ADME profile check, we have developed 
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few protease inhibitors based on the pharmacophoric 

features of existing antivirals. In order to enrich the basal 

knowledge during this long process of investigation, 

computational chemistry has been proved to be the best 

alternative. The docking study as performed here reveals 

that among 20 compounds, the active site affinity of 

compound 20 outweighs all the three standard 

compounds, which clearly delineates its proper 

accommodation within binding pocket of Mpro. Apart 

from this docking studies, compound 20 also possess a 

good number of drug like properties. Further ADME 

study made this compound a lead of interest to explore 

further. Other than compound 20, compounds like 3, 4, 

5, 11, and 19 also found to be effective as Mpro 

inhibitors. Further computational study includes the 

Molecular-Dynamic (MD) simulation of compound 20 to 

ensure no or lesser variations throughout the simulation 

analysis and the stability of the ligand-target complex. 

Data obtained out of the study will definitely serve as a 

hypothetical guideline to optimize the lead as effective 

anti-SARS-CoV-2 agent. 
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Table 1. Ligands considered for in-silico analysis 
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Table 2. Docking output and drug-likeness study of 20 compounds 

Docking Score Drug-Likeness  Parameters 

Compound 
BE* 

Kcal/mol 

Mol wt 

(g/mol) 

Consensus 

Log P 

H-bond 

donors 

H-bond 

acceptors 

Lipinski’s 

Rule 

Rotatable 

bonds 
TPSAα Veber’s Rule 

Boceprevir 

(Co-crystal 

Ligand) 

-6.4 519.68 2.09 4 5 
1 violation 

(MW>500) 
14 150.70 

2 

Violation 

(Rot bonds>10and 

)2Å TPSA> 140 

Standard 1 

(Lopinavir) 
-7.5 628.80 4.53 4 5 

1 violation 

(MW>500) 
15 120.00 

1 violation 

(Rot bonds>10) 

Standard 2 

(Ritonavir) 
-7.0 720.94 5.03 4 7 

2 violation 

(MW>500 

Log P >5) 

18 202.26 

2 violation 

(TPSA>140 

Rot bonds>10) 

Standard 3 

(Indinavir) 
-8.4 613.79 2.78 4 7 

1 violation 

(MW>500) 
12 118.03 

1 violation 

(Rot bonds>10) 

1 -7.7 348.40 3.11 3 3 No violation 7 78.43 No violation 

2 -7.5 348.35 2.63 3 4 No violation 5 87.66 No violation 

3 -7.0 491.56 2.04 3 8 No violation 10 119.85 No violation 

4 -7.5 391.42 2.36 4 4 No violation 9 107.53 No violation 

5 -7.3 391.42 2.48 4 4 No violation 9 107.53 No violation 

6 -7.9 428.46 3.91 3 5 No violation 6 128.81 No violation 

7 -7.8 350.37 2.80 3 4 No violation 7 87.66 No violation 

8 -7.1 419.47 3.34 4 5 No violation 9 111.02 No violation 

9 -7.3 373.40 2.72 2 4 No violation 5 82.00 No violation 

10 -7.6 344.37 2.83 2 4 No violation 5 80.04 No violation 

11 -7.1 379.46 1.62 4 5 No violation 10 116.92 No violation 

12 -6.8 432.55 3.80 2 4 No violation 11 71.45 
1 violation 

(Rot bonds>10) 

13 -6.9 396.52 3.38 3 3 No violation 9 78.43 No violation 

14 -6.7 342.35 0.78 2 6 No violation 9 110.28 No violation 

15 -7.7 408.45 1.86 3 5 No violation 10 104.73 No violation 

16 -6.8 347.41 3.96 2 3 No violation 6 66.40 No violation 

17 -7.1 325.40 2.41 3 3 No violation 6 69.56 No violation 

18 -7.9 353.33 1.21 4 6 No violation 7 124.69 No violation 

19 -8.4 415.44 3.50 3 5 No violation 8 104.31 No violation 

20 -8.6 400.43 3.16 4 4 No violation 7 98.66 No violation 
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Table 3. ADME profiling of 10 primary active compounds 

Compounds 
Log S* 

(ESOL) 

GI 

absorptionƙ 

BBB 

permeantƱ 
Log Kpα 

CYP450 inhibition 
Medicinal Chemistry 

alerts 

1A2 2C19 2C9 2D6 3A4 PAINSµ Brenk€ 

3 M. Sol High No -6.73 No No Yes No Yes 0 0 

4 Sol High No -6.61 No No Yes Yes No 0 0 

5 Sol High No -6.61 No No Yes Yes No 0 0 

6 P. Sol Low No -4.67 No Yes Yes Yes No 1 1 

8 M. Sol High No -5.61 No No Yes No No 1 2 

11 Sol High No -7.46 No No No Yes Yes 0 0 

15 Sol High No -7.48 No No No No No 0 2 

18 Sol High No -7.45 No No No Yes No 0 1 

19 M. Sol High No -5.84 No No Yes Yes No 0 0 

20 M. Sol High No -5.88 No No No Yes No 0 0 
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