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ABSTRACT 

 
     The plethora of studies indicated that there is a cross talk relationship between harmaline and 

serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is 

assessment the effects of CA1 5-HT4 receptor on memory acquisition deficit induced by harmaline. 

Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-

190) were injected intra-CA1. For memory measurement,a single-trial step-down passive avoidance 

apparatus was used. The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg), 

RS67333 (0.5 ng/mouse) and RS23597-190 (0.5 ng/mouse)decreased memory acquisitionprocess in the 

adult mice. Moreover, concurrent pre-training administration of subthreshold doseof RS67333 (0.005 

ng/mouse) orRS23597-190 (0.005 ng/mouse)with subthreshold dose of harmaline (0.5 mg/kg, i.p.)intensify 

impairment of memory acquisition. All above interventions did not change locomotion and tail flick 

behaviors. In conclusion, the results demonstrated that the synergistic effect between both CA1 5-HT4 

receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a 

modulatory effect for CA1 5HT4 receptor on Harmaline induced amnesia.  
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INTRODUCTION 
    There are severities of studies about 

involvement of serotonergic (5-HT) system in 

cognitive and non-cognitive behaviors.For 

instance a modulatory effect on stress, anxiety, 

food intake, pain perception, rhythm, learning and 

memory behaviors, inasmuch as dysfunction of 

serotonergic system can induced posttraumatic 

stress disorder, anxiety, and depression [1-5], 

which are often accompanied by impairment of 

learning and memory [6-8]. In this line some 

investigations demonstrated that 5-HT has a 

crucial role for learning and memory formation 

process via interaction on multiple receptor 

subtypes. For instance, it showed that blockade or 

activation of serotonergic system induced 

enhanced and impaired learning and memory 

process, respectively[9], while the opposite 

findings have also been reported[10, 11].It is clear 

that multiple 5-HT receptors have different 

responses on learning and memory, depending the 

drug, place of injection (focal or systemic), timing 

of drug injection and behavioral tests used[12]. 

The serotonergic axons from raphe nucleus 

(primarily localized of 5-HT cell bodies) projects 

into almost every brain region[13, 14], including 

hippocampus[6, 15, 16] and cerebral cortex[17], 

that have high expression of different 5-HT 

superfamily [18-21], indicating the important role 

of this system on cognition process such as 

learning and memory [18]. In according of 

structural, operational, and transductional 

properties of 5-HT receptors, seven classes for 5-

HT were classified, namely 5-HT1–

7superfamily[22, 23]. In among of these receptors 

5-HT3 receptor is a ligand-gated ion channel, 

while others are G-protein coupled receptor[22, 

23].  

Among of 5-HT receptors 5-HT4 receptor has a 

relatively high expression in the limbic system 

and a critical role for learning and memory 

process[24]. This receptor seems that has variety  
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responses on different stages of memoryformation 

(acquisition, consolidation and retrieval). It seems 

that activation of this receptor induced a positive 

effect on the acquisition phase. The effect 5-HT4 

on memoryconsolidation is very variation 

dependent the method of injection and memory 

assessment[25-27]. About the memory retrieval a 

study revealed that 5-HT4receptor did not alter 

this memory state [25].It showed that activation 

of 5-HT4 receptor via systemic infusion increased 

LTP phenomenon in the CA1 and dentate gyrus 

regions[28, 29]. Monoamine oxidase A (MAOA), 

as a key enzyme in for serotonergic 

system,degrades the concentration level of 5-HT 

in the several parts of brain such as 

hippocampus[30, 31].  

β-carbolines are a class of alkaloids which have 

elicited considerableresearch interest [32, 33]. β-

carbolinesconsistof an indole nucleus and a 

pyridine ring[32, 34] that depending upon their 

degree of ring saturation can be dividedinto three 

structural groups: (a)harmane; (b)harmalane; and 

(c) the harmaline[32]. These compounds are 

endogenously produce and exist in normal body, 

such asblood plasma, heart, kidney, liver and 

brain tissue[35-37]. The biological significance of 

β-carbolines has been suggestedto have 

neuroprotective properties as well as cytotoxic 

properties [32, 37-39], excitation and euphoria 

[40, 41],analgesic effects[42], anticancerous and 

antibioticproperties[43, 44]. Some investigations 

indicated that β-carbolines bind with high affinity 

toa variety of different targets including MAOA, 

MAOB, benzodiazepine, imidazoline, dopamine 

and 5-HT receptors[45-49]. β-carbolines by 

inhibition of MAOA or MAOBincrease the 

extracellular norepinephrine, dopamine and 5-HT 

levels in several brain regions[34, 35, 50]. As 

regards β-carboline could enhance 5-HT levels in 

several brain area through inhibition of MAO 

reuptake system and considering the role of β-

carbolines[51], 5-HT receptors[52-57], and 

hippocampus[58-60], in memory process, in the 

present study, the effects of harmaline on memory 

acquisition/exploratory behaviors/pain response 

and involvement of 5-HT4 receptors on these 

behaviors in the step-down passiveavoidance, 

open field and tail flick tests in mice have been 

investigated.  

 

MATERIALS AND METHODS 
Animals 

    Male NMRI mice weighing 25–30 g 

obtainedfrom the University of Tehran (Tehran, 

Iran) were used. Animals were housed in groups 

of 10 in plastic cages and maintained at a 

controlled temperature of 22±2 °C under a 12/12-

h light/dark cycle with water and food freely 

available except during the limited times of 

experiments. Ten animals were used in each 

group and each mouse was used once only. 

Behavioral tests were done during the light phase 

of the light/dark cycle. The investigation was 

approved by the Ethics Committee of the Faculty 

of Science of the University of Tehran which 

corresponds to the national guidelines for animal 

care and use.  

Stereotaxic surgery 

    Mice were anaesthetized using a solution 

containing ketamine hydrochloride (50 mg/kg) 

plus xylazine (5 mg/kg) and positioned in a 

stereotaxic frame (Stoelting Co, Illinois, USA). 

Then, the skin was incised and skull was cleaned. 

Next, two stainless-steel guide cannulae (8 mm 

length, 22 gauge) were bilaterally implanted 1 

mm above the dorsal portion of the dorsal 

hippocampus (CA1). The following coordinates 

were used based on the Paxinos and Franklin 

atlas) [61]. Stereotaxic coordinates for the CA1 

area of the dorsal hippocampus were 

anteroposterior (AP)=-2 mm from bregma, 

mediolateral (ML) ±1.6 from the sagital suture 

and dorsoventral (DV)= -1.5 mm from the skull 

surface. Cannulae were secured to the bone with 

dental acrylic cement. A stylet was presented into 

the guide cannula to prevent possible obstruction. 

All mice were allowed about 5-7 days to recover 

from surgery and from the effect of the anesthetic 

agents[62, 63].  

Memory testing and apparatus 

     The inhibitory avoidance apparatus comprised 

of a wooden box (30×30×40 cm
3
) with a floor 

which consisted of parallel stainless steel rods 

(0.3 cm in diameter, spaced 1 cm apart). A 

wooden platform (4×4×4 cm
3
) was set in the 

center of the grid floor. Electric shocks (1 Hz, 0.5 

s and 50 VDC) were delivered to the grid floor 

via an isolated stimulator (Grass S44, Quincy, 

MA, USA).  
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For testing, each mouse was gently placed on the 

wooden platform. When the animal stepped down 

from the platform and located all its paws on the 

grid floor, intermittent electric shocks were 

delivered continuously for 15 s. This training 

method was carried out among 9:00 a. m. and 

2:00 p.m. Twenty-four hours after training, each 

animal was located on the platform again, and the 

step-down latency was measured with a stop-

watch as passive avoidance behavior. An upper 

cut-off time of 300 s was set. The retrieval test 

was also carried out among 9:00 a. m. and 2:00 p. 

m[64, 65].  

Measurement of locomotor activity 

     The locomotion apparatus (BorjSanat Co, 

Tehran, Iran)comprised of clear perspex container 

box (30 cm × 30 cm × 40 cm high). The apparatus 

has a gray perspex panel (30 cm × 30 cm × 2. 2 

cm thick) with 16 photocells which 

separatedthebox to 16 equal-sized squares. 

Locomotor activity was recorded as the number of 

crossings from one square to another during 5 

min[66-68].  

Tail flick test 

    The tail flick test is a test of the pain responsein 

animals, alike to the hot plate test. It is used in 

basic painexamination and to measure the 

effectiveness of analgesics, through observing the 

reaction to heat. It was first presentedby[66, 69, 

70]. A light beam is focused on the animal's tail 

and a timer starts. Once the animal flicks its tail, 

the timer stops and the recorded time is a measure 

of the pain threshold. This behavior testing was 

done 5 min after training.  

Drugs 

    The drugs used in the present study were 

Harmaline (1-methyl-7-methoxy-3, 4-dihydro-

bcarboline)from Sigma (St. Louis, MO), 5-HT4 

receptor agonist (RS67333)and 5-HT4 receptor 

antagonist (RS23597-190) from (Tocris 

Bioscience United Kingdom). The time 

ofadministration and doses of drugs used in the 

experiments were chosenaccording to pilot studies 

and publishedwork in scientific literature[33, 34, 

64, 71]. The compounds were tested at doses: 

harmaline:0.25, 0.5 and 1mg/kg, RS67333: 0.005, 

0.05 and 0.5 ng/mouse, RS23597-190: 0.005, 0.05 

and 0.5 ng/mouse. Harmaline was dissolved in 

sterile0.9% saline solution and the compound was 

stirred for 1h beforeobtaining the final solution; 

other drugs were dissolved in 0.9% saline, just 

before the experiments.  

Drug treatment 

    For drug administration, the animals were 

restrained gently by hand; the stylets were 

removed from the guide cannulae and substituted 

by 27-gauge infusion needles (1mm below the tip 

of the guide cannulae).  

The injection solutions were administered in a 

total volume of 1 μl/mouse (0.5 μl in each side) 

over a 60 s period, manually. Injection needles 

were left in place for an extra 60 s to facilitate the 

diffusion of the drugs[71, 72]. The protocol has 

been illustrated in Table 1.  

 
Table 1. illustrates all experiments, groups of animals, time of drugs infusion and doses of drugs.  
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Figure 1 
Pre-training 

treatment (i.p.) 

Pre-training treatment 

(intra-CA1) 

Step-through 

latency (panel A) 

locomotor 

activity (panel 

B) 

Tail flick 

(panel C) 

Left - 
RS67333 (0.005, 0.05 and 

0.5 ng/mouse) 
Decrease No effect No effect 

Right - 
RS23597-190(0.005, 0.05 

and 0.5 ng/mouse) 
Decrease No effect No effect 
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p
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 Figure 2      

Left 
harmaline (0.25, 0.5 

and 1 mg/kg) 
Saline (1 µl/mouse) Decrease No effect No effect 

Middle 
harmaline (0.25, 0.5 

and 1 mg/kg) 

RS67333 (0.005 

ng/mouse) 

Potentiated amnesia 

by harmaline 
No effect No effect 

Right 
harmaline (0.25, 0.5 

and 1 mg/kg) 

RS23597(0.005 

ng/mouse) 

Potentiated amnesia 

by harmaline 
No effect No effect 

 

 

http://en.wikipedia.org/wiki/Nociception_assay
http://en.wikipedia.org/wiki/Hot_plate_test
http://en.wikipedia.org/wiki/Pain
http://en.wikipedia.org/wiki/Animal_testing
http://en.wikipedia.org/wiki/Analgesics
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Statistical analysis 

    We chose to analyze data using the Kruskal-

Wallis nonparametric one-way analysis of variance 

(ANOVA) followed by a two-tailed Mann-

Whitney’s U-test for because individual variations 

in step-down apparatus data. The median as well as 

interquartile ranges of the step-down latencies were 

recorded for ten mice in each experimental group. 

One/two way ANOVA followed by post-hoc test 

was used for statistical evaluation in the tail flick 

and open filed tasks. In all evaluations p<0.05 was 

considered statistically significant. All statistical 

analysis results have been summarized in the table 

2. 

Experiment1: effects of pre-training 5-HT4 drugs 

administration on memory acquisition 

    In this experiment, eight groups of mice were 

used. Four groups of animals received saline 

(1µl/mouse) or different doses of RS67333 (0.005, 

0.05 and 0.5 ng/mouse)5 min before training. The 

other four groups received saline (1 

µl/mouse)ordiverse doses of RS23597-190 (0.005, 

0.05 and 0.5 ng/mouse)5 min prior training.  

Experiment2: effects of pre-training 5-HT4 

receptor drugs administration on memory 

acquisition under the disruptive influence of 

harmaline 

    In this experiment, twelve groups (three arms) of 

mice were used. The animals received saline (1 

µl/mouse) or different doses of harmaline (0.25,  

0.5 and 1mg/kg; i.p.)15 min before training. These 

mice received intra-CA1 pre-training saline 

(1µl/mouse, for groups), subthreshold does of 

RS67333 (0.005ng/mouse, for groups) or 

RS23597-190 (0.005 ng/mouse, for groups) 5 min 

earlier training.  

Histology 

    Histological results were plotted on 

representative sections taken from the mice brain 

atlas of Paxinosand Franklin(Paxinos and Franklin, 

2001)[61][61]. Cannulae were implanted into the 

CA1 regions of dorsal hippocampus of a total of 

214 mice, however only the data from 200 animals 

with correct cannulae implants were included in 

statistical analyses.  

 

RESULTS 
Effects of pre-training intra-CA1 administration 

of 5-HT4 drugs on memory acquisition, 

locomotor activity and tail flick 

Kruskal-Wallis and Mann-Whitneydatadisplays 

that the infusion of RS67333 (0.5ng/mouse, figure 

3A; left panel) and RS23597-190 (0.5ng/mouse, 

figure 1A; right panel), 5 min before training, 

reduced memory acquisition. In addition, one-way 

ANOVA postulates that all interventions did not 

alter locomotor activity and tail flick behaviors 

(figure 1B and C; left panels for RS67333, 

meanwhile figure 1B and C; right panels for 

RS23597-190). 
 

Table 2. describe Kruskal–Wallis and one/two-way ANOVA analyses results for all experimental groups.  

Step-through latency(panel A) 

Locomotor activity (panel B) Tail flick (panel C) 

Treatment 

effect 

dose 

effect 

dose 

interaction 

treatment 

effect 

dose 

effect 

dose 

interaction 

E
x

p
er

im
en

t 
1

 

Figure 1 Drug 

H 

(3,3

6) 

P 

F 

(3, 

36) 

P - - - - 

F 

(3, 

36) 

P - - - - 

Left RS67333 
10.4

5 

<0.0

1 
1.19 

>0.

05 
- - - - 

1.1

7 

>0.

05 
- - - - 

Right RS23597 
10.1

2 

<0.0

1 
0.79 

>0.

05 
- - - - 

3.0

6 

>0.

05 
- - - - 

E
x

p
er

im
en

t 
2

 Figure 2 Drug 

H 

(3,3

6) 

P 

F 

(1, 

72) 

P 

F 

(3, 

72) 

P 

F 

(3, 

72) 

P 

F 

(1, 

72) 

P 

F 

(3, 

72) 

P 

F 

(3, 

72) 

P 

Left 
Harmaline

+ Saline 

8.93

6 

<0.0

01 
4.28 

>0.

05 

0.3

9 

>0.

05 
0.2 

>0.

05 
4.8 

>0.

05 

1.8

9 

>0.

05 
0.29 

>0.

05 

Middle 
harmaline 

+ RS67333 

2.41

6 

<0.0

1 
0.35 

>0.

05 

0.7

3 

>0.

05 
0.26 

>0.

05 

1.8

2 

>0.

05 

1.3

7 

>0.

05 
0.12 

>0.

05 

Right 
harmaline 

+ RS23597 

20.7

32 

<0.0

01 
0.58 

>0.

05 

0.4

2 

>0.

05 
0.11 

>0.

05 

0.1

3 

>0.

05 

0.3

1 

>0.

05 
0.18 

>0.

05 
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Figure 1. the effects of pre-training intra-CA1 administration of saline, RS67333 and RS23597-190 on memory acquisition, 

locomotor activity and tail flick. A left and right panels exhibit the effects of pre-training administration of RS67333 (0.005, 

0.05 and 0.5 ng/mouse) and RS23597-190 (0.005, 0.05 and 0.5 ng/mouse) on memory acquisition, respectively. Test session 

step-down latencies are expressed as median and quartile for 10 animals. Similarly, locomotor activity in panel B was 

examined 5 min after memory testing and tail flick in panel C was tested 5 min after training. Each bar is mean±S.E.M. 

**P<0.01 when compared to saline/saline group.  

 

Effects of pre-training 5-HT4 receptor drugs 

administration on memory acquisition, 

locomotor activity and tail flick under the 

amnesia induced byharmaline 

    Kruskal-Wallis and Mann-Whitneyresults in 

according of harmaline-treated groups exhibit that 

a subthreshold dose of RS67333 (0.005 ng/mouse, 

figure 2A, middle panel) or RS23597-190 (0.005 

ng/mouse, figure 2A, right panel)potentiated 

memory impairment induced by harmaline. 

Moreover, two-way ANOVA postulates that these 

interventions did not alter both locomotor activity 

(figure 2B; middle panel for RS67333, meanwhile 

figure 2B; right panel for RS23597-190) and tail 

flick (figure 2C; middle panel for RS67333, 

meanwhile figure 2C; right panel for RS23597-

190) behaviors.  
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Figure 2. the effects of 5-HT4 receptor drugs on memory acquisition, locomotor activity and tail flick in the present and 

absence of harmaline. Figure 4A indicates the effects of pre-training infusion of harmaline (0.25, 0.5 and 1 mg/kg, i.p.; left 

panel) on animals which were trained under the effect of saline (1 µl/mouse; intra-CA1; left panel), RS67333 (0.005 ng/moue, 

intra-CA1; middle panel) or RS23597-190 (0.005 ng/mouse, intra-CA1; right panel). Test session step-down latencies are 

expressed as median and quartile for 10 animals. Furthermore, locomotor activity in panel B was measured 5 min after 

memory testing and tail flick in panel C was tested 5 min after training. Each bar is mean±S. E. M. ***p<0.001 when 

compared with saline/saline group. + p<0.05 when compared with respective harmaline/saline group.  
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DISCUSSION 
    The data revealed that pre-training intra-CA1 

injection of higher dose of 5-HT4 receptor agonist 

(RS67333) and 5-HT4 receptor antagonist 

(RS23597-190)impaired memory acquisition by 

itself, while did not alter locomotion and tail flick 

behaviors. The previous reports indicated that 5-

HT receptors depletion or activation of 

serotonergic system (i.e., tryptophan) impaired 

[74] memory formation process respectively, 

indicating direct participation of 5HT in learning 

and memoryformation[75].The responses of 5-HT 

receptors on learning and memory are very 

variable, because: 1- differentialaffinity from 5-

HT to its receptors[76] and 2- expression of 5-HT 

receptors on pre- and postsynaptic membranes of 

neurons[75, 76]. Both of these points can be 

mention as two critical factors inlearning and 

memory mechanisms[75, 76]. 5-HT4 receptors 

displays constitutive (ligand independent) 

activity, even if it contributes to function of the 

receptor only in a small extent. This activity 

clarifies the differences between expected and 

observed effects of agonists and antagonists of 5-

HT4 receptors. Some expected agonists shown 

rather silent or antagonistic effects depending on 

the level of ligand independent activity [77]. In 

consistent our data, some evidences revealed that 

5-HT4 receptor agonist [25] and antagonist [78] 

impaired memory. Some studies indicated that 5-

HT4 agonists enhance learning and memory[79-

82], or has no effect onmemory[12]. Therefore, 

the actual effect of 5-HT receptors on memory 

formation process has remained unclear in order 

to many contradictory findings. It seems that 

different brain regions, systemic or intra-focal 

injections, nature and degree of difficulty of 

behavioral tasks induced a critical role for the 

effect of 5-HT on learning and memory [57, 83-

85]. Moreover, the data revealed that pre-training 

systemic infusion of harmaline reduced memory 

acquisition, while did not change locomotion and 

tail flick behaviors. Harmaline induce several 

effects on cognitive and non-cognitive behaviors, 

includingeuphoria[40] and impair both associative 

and motor learning[32, 34, 50]. On the other 

hand, several report showed that harmaline 

improved learning and memory[32, 50]. It seems 

that the doses of drugs and route/methods of 

injections are very important for the effects of 

these compounds [50]. A report showed that 

harmaline decrease current of voltage-gated 

calcium channel, herein decrease neuron 

excitation. In the synaptic communication, 

calcium has a vital role, which controlling many 

cellular processes, inasmuch as increase of 

sytoplasmic calcium level concentration 

stimulates cellular signaling pathways involved in 

memory processes[32]. In conclusion, we can 

propose that the memory acquisition deficit 

induced by harmaline is in order to decrease 

calcium level and reduction of neuron excitation.  

In continue of this study, we assess the effect of 

5-HT4 receptors on harmaline induced avoidance 

memory deficit. The present study indicated that 

RS67333 and RS23597-190 strengthen amnesia 

induced by harmaline. It seems that harmaline by 

reducing neuron excitation[32], and 5-HT4 agents 

via constitutive (ligand independent) activity [77], 

causes impairment of memory acquisition. Since, 

co-administration of harmaline and 5-HT4 agents 

impaired memory acquisition; we proposed that 

these drugs have a synergistic effect on memory 

acquisition. However, further experiments are 

required to clarify the exact mechanisms 

involved, but it seems that harmaline induced its 

interaction effect via two mechanisms: 1-directly 

binding to 5-HT receptors[86] and 2-enhancement 

of extracellular concentration 5-HT levels via 

inhibition of MAOAenzyme in different brain 

region[51].  
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