Patient doses of CT examinations in Western and Eastern Azerbyjan provinces of Iran

FaribaFirouzi¹,SorayaEmamgholizadehMinaei¹, Hamid Reza Khosravi1^{2, 3,*}

¹Department of radiology, ShahidBeheshti University of Medical Sciences, Tehran, Iran ²Nuclear and radiation support department, Iranian Nuclear Regulatory Authority, Tehran, Iran ³Nuclear Sciences School, Nuclear Sciences & Technology Research Institute, Tehran, Iran

*Corresponding Author: email address: hrkhosravi@razi.tums.ac.ir (H. R. Khosravi)

ABSTRACT

Medical X-rays are the largest man-made source of public exposure to ionizing radiation. While the benefits of computed tomography (CT) are well known in accurate diagnosis, those benefits are not risk free. CT is a device with higher patient dose in comparison with other conventional radiation procedures. So it is important to avoid conditions where the amount of radiation used is more than that needed for the procedure. Since that there is not any report on the radiation doses received by patients in CT scan wards in hospitals under control of Eastern and Western Azerbyjan medical sciences university, in the North West of Iran; this study was a part of national project to establish and optimize local and national diagnostic guidance levels. This work intends to calculate CT Dose Index (CTDI) and Dose Length Product (DLP) in common CT procedures in two north western provinces of country. Two hospitals got involved in the present study. CTDI and DLP measurements were done according to AAPM report no. 96 for head, chest and abdomen CT procedures. The mean CTDI_w for head (base), sinus, chest and abdomen were 12.22, 13.13, 13.3 and 7.6 mGy, respectively.Patient dose levels in CTDI and DLP in our study aren't higher than those in developed countries.

Keywords: Patient dose inWestern and Eastern Azerbyjan ; CTDI; DLP.

INTRODUCTION

Computed tomography has made dramatic advances, both in its breadth of application and in its technological improvements. The advances are such that it is possible with the spiral technique to carry out an entire examination of the chest within a single breath hold as against a few minutes in earlier system. Yet these advances have brought with them the potential for greatly increased doses of radiation to the patient[1]. Furthermore, CT provides high quality X-ray imaging and clinical application of this technique has continued to increase.

It is indicated that patient doses from CT procedures are quite higher than doses from other imaging modalities based on ionizing radiation. Therefore, however, CT procedures include just 5% of entire number of medical X-ray procedure; they accounts 49% of annual collective dose from all medical X-ray examinations to the population in 2006 [2].So, evaluation of patient dose in different ionizing diagnostic techniques and its optimizations especially in CT procedures has a major

concern in many countries [2-8]. This article represents the outcomes on typical dose levels to patients having the most common CT examinations to assess the patient dose in terms of $\text{CTDI}_{\text{vol},w}$ and DLP and compare the results with other studies toward establishing Local and National Diagnostic Reference Levels (LDRLs, NDRLs) for mentioned examinations.

MATERIALS AND METHODS

Present study was done in two hospitals in Urmia, Western Azerbyjan (Hospital A) and Tabriz, Eastern Azerbyjan (Hospital B). Collecting data was a one month process done in July 2011.

Assessment of patient doses in CT examinations

Data collection

Detailed specifications of CT scanners are shown in Table 1. For this study a questionnaire which was included the following items: Hospital name, scanner model & manufacturer, year of installation and for each CT examination exposure parameters (kilovoltage (kVp), tube current (mA), exposure time, slice thickness and number of slices) was prepared. At least 10 patients parameters were used to fill out the related forms for common CT examinations including, Head, Chest, Abdomen & Pelvis.

CT dose measurements

CTDI and Dose length product (DLP) have been measured and calculated, respectively for CT procedures. CTDI which is a measure of the dose from single-slice irradiation [9, 10] is defined as the integral along a line parallel to the axis of rotation (z) of the dose profile, D (z), divided by the nominal slice thickness (T) [11, 12]

 $CTDI = \frac{1}{\tau} \int_{-\infty}^{+\infty} D(z) dz$

Calculation of CTDI in air (CTDI_{100, air}) and in polymethylmethylacrylate the cylindrical (PMMA) phantoms (CTDI100, phantom) capable of both head (16 cm diameter) and body (32 cm diameter) were done as recommended by EC guidelines and AAPM report no. 96 [9, 13]. $CTDI_{100, air}$ was measured in the center of gantry rotation using a 10 cm pencil ionization chamber (RTI AB Electronic, Sweden). Weighted CTDI (CTDI_w) using $CTDI_{100}$ at 1 cm below the surface ($CTDI_{100}$) _p) and at the center (CTDI_{100, c}) of standard head and body PMMA phantoms were measured according to below formula.

 $CTDI_{w} = (1/3 \ CTDI_{100, c} + 2/3 \ CTDI_{100, p})$ (mGy)

Which $\text{CTDI}_{100, p}$ is mean of measurements at four locations around the periphery of phantom.

The normalized average dose to the slice is approximated by the CTDI_{w} , normalized to unit mAS:

 $nCTDI_{w} = 1/c (1/3 CTDI_{100, c} + 2/3 CTDI_{100, p})$ (mGy)

Which C is the mAS[10, 11]

In spiral mode, volume CTDI (CTDI $_{\rm vol})$ is calculated.

 $CTDI_{vol} = CTDI_w / Pitch (mGy)$

Where, pitch is the ratio between table increment per rotation and beam width [9, 14]. Patient dose in a complete CT examination was assessed in terms of DLP: $DLP = \sum_i nCTDIw$. T. N. C (mGy.cm) for Axial scan and $DLP = \sum_i nCTDIvol$. L. C forspiral scan Where, i represents each scan sequence forming part of an examination and N is the number of slices, T (cm) is the thickness of slice, L is the scan length in cm for spiral scan and radiographic exposure C (mAS), in a particular sequenc[9, 14].

RESULTS

The mean CTDI_{w} in brain and body phantoms were 13.75 and 5.63 mGy/100mAS, respectively. The mean CTDI_{w} for head (base), sinus, chest and abdomen procedures (in adult patients) were 12.22, 13.13, 13.3 and 7.6 mGy, respectively, and the mean DLP for head (base), sinus, chest and abdomen procedures (in adult patients) were 99.64, 96, 369.44, 412.73 mGy.cm, respectively.

Complete CTDI_{w} and DLP values in the most common CT procedures for different age groups are reported in Table 2.

Hospital	Manufacturer	Scanner model	Year of Installation	slice classes	No. of patients/ year
А	Toshiba	Xvision/EX	1999	1	28000
В	Siemens	Somatom Balance	2001	1	33000

Table1. Specifications of CT scanners used at each hospital

Table2. Calculated CTDI_{w} and DLP of the most common procedures in participating hospitals.

Examination			Hospital A					Hospital B					
	kVP	mAS	CTDI _W (mGy) ±SD	DLP(mGy.cm) ±SD	Axial (A)/ Helical (H)	kV P	mAS	CTDI _W (mGy) ±SD	DLP(mGy.cm) ±SD	Axial (A)/ Helical (H)			
Head(sinus)	120	100	15 34+5 3	139 59+20 6	А	110	135	10 92+2 3	52 416+15 2	А			
Head(base)	120	100	15 34+5 3	53 69+10	Δ	110	140	9 10+1 2	145 6+30	Δ			
Head(Cereberum)	120	100	15.34 ± 5.3 15.34+6.2	122 72+7		110	140	9.10±1.2	145.0 ± 50 145.6 ± 50.2	A A			
Chest	120	250	14 04+2 6	336 96+45	A	A 110		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A			
Chest(HRCT)	120	150	8 4+1 2	126 36+20 1	A	-	-	-	+01.72±00.4				
Abdomen	120	190	10.67+2.6	373.46+46.5	A	110	120	4.52+1.6	452+46	A			
For pediatric patients age < 1 year													
Head(sinus)	120	60	9.2±4.8	13.8±8	A	110	60	9.1±1.7	27.31±10	A			
Head(base)	120	60	9.2±4.8	46±10.2	Α	110	180	9.1±1.8	45.52±15.4	Α			
Head(Cereberum)	120	60	9.2±3.5	32.21±9.6	Α	110	180	9.1±1.8	45.52±15.4	Α			
Chest	120	60	3.37±1.2	33.7±8.2	Α	-	-	-	-	А			
Chest(HRCT)	-	-	-	-	Α	-	-	-	-	А			
Abdomen	120	60	3.37±1.6	50.5±30.2	Α	80	80	4.24±1.3	212.25±84	А			
	For pediatric patients age 1-5 year												
Head(sinus)	120	85	13.04±5.2	58.67±16.2	A	110	60	9.1±3.5	27.31±12	А			
Head(base)	120	85	13.04±5.6	32.6±12	Α	110	110	9.1±3.5	45.52±16.3	Α			
Head(Cereberum)	120	85	13.04±3.5	91.27±20	Α	110	110	9.1±3.5	72.84±30.2	Α			
Chest	120	85	4.76±2	66.64±25	Α	-	-	-	-	Α			
Chest(HRCT)	-	-	-	-	Α	-			-	Α			
Abdomen	120	85	4.76±2.3	95.2±17.2	Α	110	36	4.52±1.2	226.4±32	Α			
			For	· pediatric patient	s age 5	-10 yea	r						
Head(sinus)	120	110	15.34±5	118.12±20	Α	110	140	9.1±3.2	27.31±4.5	А			
Head(base)	120	110	15.34±3.4	53.69±12	Α	110	140	9.1±3.2	91.05±10	Α			
Head(Cereberum)	120	110	15.34±3.4	122.72±36.2	Α	110	140	9.1±3.2	72.84±23	Α			
Chest	120	200	11.2±2.6	224±26.3	Α	110	120	-	-	Α			
Chest(HRCT)	-	-	-	-	Α	-	-	-	-	Α			
Abdomen	120	150	8.4±3.6	235.2±32.1	Α	110	120	4.52±2.1	226.4±20	Α			
		-	For	pediatric patients	s age 1	0-15 yea	ar						
Head(sinus)	120	100	15.34±5	139.59±23	Α	110	135	9.1±3.6	145.6±11.3	Α			
Head(base)	120	100	15.34±4	53.69±14.2	A	110	140	9.1±2.1	145.6±32	А			
Head(Cereberum)	120	100	15.34±4.5	122.72±32	Α	110	140	9.1±1.6	145.6±32	Α			
Chest	120	0 200 11.2±2.3 268.8±26		A	-	-	-	-	А				
Chest(HRCT)	-	-	-	-	Α	-	-	-	-	Α			
Abdomen	omen 120 190 10.64±3.2 372.4±65		Α	110	120	4.52±1.3	226.4±42.1	Α					

Table3. The mean $CTDI_w$ and DLP compared with other city in Iran and European Guidelines (EG)

Dose quantities	Examination	Urmia (W-A)	Tabriz (E-A)	Yazd [17]	Saskatchew an 2006 [16]	EG [9, 15]	IRSN (FRA) [3]	Swiss [18]	Nigeria [19]	Indi a [20]
	Sinus	15.34	10.92	-	-	35	-	30	-	-
CTDI _w (mGy)	Head(base)	15.34	9.10	20.25	-	60	65	60	73.5	32
in	Chest	14.04	12.56	8	-	30	15	15	22.7	10
adult patients	Abdomen	10.69	4.52	8.3	-	35	-	20	37.9	13
	Sinus	139.59	52.416	-	-	360	-	510	-	-
DLP(mGy.cm)	Head(base)	53.69	145.6	322.2	1173.91	1024	1050	800	1898	875
in	Chest	336.96	401.92	209.2	664.7	650	475	480	1189	340
adult patients	Abdomen	373.46	452	243.9	780	780	-	710	1902	427

DISCUSSION

There are many methods to express radiation dose from CT examinations. CTDI_w (measured in mGY) is the radiation dose in a single slice over a standard length(9,10). DLP (measured in mGY.cm) is the product of CTDI_{vol} and scan length. CTDI_w values in CT procedures are related to exposure parameters including mAS and kVp. In addition; DLP increases by elevating of number of slices and scan length. Therefore DLP in abdomen and chest examinations are higher than head examination. On the other hand DLP and CTDI_w increase as well as age (subsequently size) goes up. In hospital A, the values of mean CTDI_w in all CT examinations and in all age groups were higher than in hospital B. It could be because of wider scanner related collimation in hospital A and/or due to the absence of a special protocol for each age group.Controversarily, quantity of DLP in hospital A is noticeably higher (except for Sinus protocol) which the number of slice or slice thickness could be the effective factors. The mean CTDIwand DLP values in Western and Eastern Azerbyjan (W-A, E-A) were below in comparison with European Guidelines (EG) and

REFERENCES

1. Shrimpton P, Wall B. The increasing importance of X ray computed tomography as a source of medical exposure. Radiation Protection Dosimetry. 1995;57(1-4):413-5.

2. NCRP report no.160. Radiation Exposure of the Population of the United States. 2009.

3. Roch P, Aubert B. Frenchdiagnosticreferencelevelsindiagnosticradi ology, computedtomographyandnuclear medicen: 2004–2008 REVIEW. Radiation Protection Dosimetry. 2012:1-24.

4. Asadinezhad M, Toossi MTB. Doses to patients in some routine diagnosticX-ray examinations in Iran: proposed the first Iranian diagnostic reference levels. Radiation Protection Dosimetry. 2008;132(4):409-14.

5. Compagnone G, Pagan L, Bergamini C. Local diagnostic reference levels in standard Xray examinations. Radiation Protection Dosimetry. 2005;113(1):54-63.

6. Shrimpton P, Hillier M, Lewis M, Dunn M. National survey of doses from CT in the UK: 2003. British Journal of Radiology. 2006;79(948):968-80. Saskatchewan [9, 15, 16]. The mean CTDI_{w} for chest and abdomen scans in Western and Eastern Azerbyjan were higher than those in Yazd and India but lower than those in France, Nigeria and Swisss. Although DLP in these procedures are much higher in comparison with results of this study which could be due to using high mAS or exposure field (Table 3).

CONCLUSION

Comparison with other studies proves that CTDIw in these two hospitals aren't higher than those in developed countries, and also QA program in CT is proven to be powerful tool for decreasing doses and increasing diagnostic efficiency.

ACKNOWLEDGMENTS

We would like to thank radiology department staffs of Imam Khomeini and Imam Reza hospitals, especially Mr. Nouri from Imam Reza hospital, and Mr. Raeismohammad for their assistance with this project. This work was supported by Iran Nuclear Regulatory Authority.

7. Toosi MTB, Asadinezhad M. Local diagnostic reference levels for somecommon diagnostic X-ray examinations in Tehran county of Iran. Radiation Protection Dosimetry. 2007;124(2):137-44.

8. Hart D, Hillier M, Wall B. National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. British Journal of Radiology. 2009;82(973):1-12.

9. Commission E. European guidelines on quality criteria for computed tomography. Report EUR. 1999;16262:69-78.

10. Sadri L, Khosravi HR, Setayeshi S. Assessment and evaluation of patient doses in adult common CTexaminations towards establishing national diagnostic reference levels. Iran J Radiat Res. in press.

11. Jessen K, Shrimpton P, Geleijns J, Panzer W, Tosi G. Dosimetry for optimisation of patient protection in computed tomography. Applied Radiation and isotopes. 1999;50(1):165-72.

12. AAPM report no.96, The measurement, reporting and Management of Radiation Dose in

CT. Report of AApm task Group.23.

13. Sonawane A, Shirva V, Pradhan A. Estimation of skin entrance doses (SEDs) for common medical X-ray diagnostic examinations in India and proposed diagnostic reference levels (DRLs). Radiation Protection Dosimetry. 2010;138(2):129-36.

14. Khosravi HR. Letter to editor. Iran J Radiat Res. 2012;10(3-4):201-3.

15. International Commission on Radiological Protection, Diagnostic reference levels in medical imaging, Review and additional advice. ICRP committee3. 2001.

16. Leswick DA, Syed NS, Dumaine CS, Lim HJ, Fladeland DA. Radiation dose from diagnostic computed tomography in Saskatchewan. Canadian Association of Radiologists Journal. 2009;60(2):71-8. 17. Bouzarjomehri F, Zare M, Shahbazi D. Conventional and spiral CT dose indices in Yazd general hospitals, Iran. Iran J Radiat Res. 2006;3(4):4.

18. Aroua A, Besancon A, Buchillier-Decka I, Trueb P, Valley J-F, Verdun F ,et al. Adult reference levels in diagnostic and interventional radiology for temporary use in Switzerland. Radiation Protection Dosimetry. 2004;111(3):289-95.

19. Ogbole G, Obed R. Radiation doses in computed tomography: Need for optimization and application of dose reference levels in Nigeria.West African Journal of Radiology.2014;21(1):1-6

20. Saravanakumar A, Vaideki K, Govindarajan KN, Jayakumar S. Establishment of diagnostic reference levels in computed tomography for select procedures in Pudhuchery, India. Journal of Medical Physics.2014;39(1):50-55.