
Journal of Paramedical Sciences (JPS)                        Summer 2012 Vol.3, No.3 ISSN 2008-4978 

 

38 
 

Gene sets involved in prostate cancer based on differential expression 
 

Hamid Alavi Majd
1
, Soheila Khodakarim

1,*
, Mostafa Rezaei Tavirani

2
, Farid Zayeri

2
, 

Nasrin Dehghan Nayeri
3
,Seyyed Mohammad Tabatabaee

4 

 

1Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences,Tehran, Iran.  
2Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.  
3Department of Proteomics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.  
4Department of Medical Informatics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 

Iran.  

 

*
 
Corresponding Author: email address: lkhodakarim@gmail.com (S. Khodakarim) 

 

ABSTRACT 
      Prostate cancer is the second most common cancer in men. In spite of on-going researches in this 

filed, the specific causes of prostate cancer are so far unknown. In this study, we used two methods of 

Gene Set Analysis to improve the biological interpretation of the observed expression patterns in 

prostate cancer. The Gene Set Analysis is a computational method to discover gene sets whose 

expression is associated with a phenotype of interest. In addition, we used these methods to search gene 

sets defined by KEGG and BioCarta. Although, our results showed that most of the gene sets were 

associated with prostate cancer in the Category and Hotelling’s T
2
 methods, the power of the Hotelling’s 

T
2
 was more than Category method in either KEGG or BioCarta gene sets. The concordance between the 

results of Pubmed articles and KEGG gene sets was more than the results of Pubmed articles and 

BioCarta gene sets. 
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INTRODUCTION 

Prostate cancer is a form of cancer that develops 

in the prostate, a gland in the male reproductive 

system. Although most prostate cancers are 

slow growing, there are cases of aggressive 

prostate cancers [1]. Prostate cancer is the 

second most common cancer in men and the 

fifth in both sexes combined. However, 14% of 

all new male cancer cases have been related to 

this cancer, in the world [2]. In Iran, the 

incidence rate of prostate cancer was 5.1 per 

100,000 person-years [3].  In spite of on-going 

researches in this filed, the specific causes of 

prostate cancer are so far unknown [4].  

The integration of biology and statistics 

sciences in Gene Set Analysis (GSA) has been 

transformed into a strong arm which enables 

researchers to assay differential gene expression 

for finding related biomarkers. A gene set is a 

group of genes that is defined based on prior 

biological knowledge on gene functions 

available from public databases such as Kyoto 

Encyclopedia of Genes and Genomes 

(KEGG)[5], BioCarta [6] and Gene Ontology 

(GO)[7]. The discovery of biomarker based on 

differentially expressed gene set rather than 

individual gene increases statistical power and 

enhances interpretability and more direct 

biological meaning.  

Many statistical approaches have been proposed 

to accomplish GSA methods. Some of them 

calculate the gene set statistic based on gene 

level statistic [8-12]. Another group of GSA 

methods used of multivariate techniques to 

calculate gene set statistic [13-14]. In this study, 

two GSA methods, the Category [8] and 

Hotelling’s T
2 

[9], were utilized to identify the 

gene sets defined by the KEGG and BioCarta, 

which were strongly associated with prostate 

cancer.  

 

MATERIAL AND METHODS 

Category method 

The Category method is the rich extension of 

GSA methods. In this method, t-statistic for all 

genes in the dataset is calculated as gene level 

statistic. The mean of the absolute t-statistics 

belonging to the same set is calculated as set 

level statistic: 
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Where ti is the t-statistic for the ith gene and m 

is the number of genes in a gene set. This idea 

that the changes of gene expressions in each 
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gene set is either up or down regulated seems 

not to be true, thus we preferred to use the 

absolute t-statistics instead of t-statistics. The 

subject sampling has been used to determine 

permutation p-values.  The subject sampling 

takes the subject (sample) as the sampling unit 

[8, 15]. The Category package in Bioconductor 

implements this method. The correlation 

structures within each set were not considered 

in this method because the set level statistic is 

computed based on the gene level statistic. 

Hotelling’s T
2 

The Hotelling’s T
2
 statistic tested the hypothesis

210
~~:H  , if F1 and F2 are multivariate 

normal distributions with common covariance 

matrix. Let m denote the number of genes in a 

gene set, ni denote sample size for ith phenotype 

(i=1,2).This statistic is: 
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where V is the covariance matrix of the gene 

expression and 𝑋 𝑖  is the m-vector of means for 

the ith phenotype. 

One of the important problems in a gene 

expression study is that the number of sample is 

always much less than the number of gene. For 

this reason, to calculate the inverse of 

covariance matrix, one needs to use additional 

steps. Tsai and Chen used the shrinkage 

estimator to calculate the inverse of covariance 

matrix [13]. The shrinkage covariance matrix 

estimator (𝑉𝑖𝑗
∗ ) proposed by Schafer and 

Strimmeris [16] can be written: 
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Where vii and rij, respectively, denote the 

empirical sample variance and sample 

correlation, and the optimal shrinkage intensity 

*̂ is estimated by:  
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Moreover, this method took account either the 

correlation structure among genes or both up- 

regulated and down-regulated gene expressions. 

The permutation p-values were calculated based 

on subject sampling in this package.  

Datasets 

The prostate cancer dataset was downloaded 

from Gene Expression Omnibus (GEO). This 

dataset which hybridized to affymetrix human 

genome HG-U133A platform consists of a total 

RNA from 148 prostate samples with various 

percentages of tumors determined by 

pathologist [15]. 12 samples whose percentage 

of tumor was not registered were excluded and 

the other samples were all included in the 

processing. We divided 136 samples based on 

percentage of tumor into two groups, tumor 

(n=65) and non-tumor (n=71). The percentage 

of tumor range 0 to 0.1 in tumor group and 0.1 

to 0.8 in another group.  The null hypothesis 

tested here is various percentages of tumors 

with respect to their overall gene expression 

pattern. There are 22,283 probe sets in this 

platform.  

The normalization of microarray data by the 

robust multi-array average (RMA) [18] 

algorithm was implemented using the 

Babelomics suite (an integrated web tool for 

microarray data analysis and functional 

profiling of genome-scale experiments) [19]. 

The Babelomics was also used to categorize 

22,283 probe sets to 106 KEGG gene sets and 

312 BioCarta gene sets. The KEGG and 

BioCarta gene sets contained 2,665 and 2,046 

probe sets, respectively. Hence a high number 

of probes on the prostate cancer lacked gene set. 

We revealed differentially expressed KEGG and 

BioCarta gene sets between tumor and non-

tumor prostate cancer samples by the Category 

and Hotelling’s T
2 
methods.  

 

RESULTS 

     In this research, we found that 1,303 probe 

sets out of 2,665 related KEGG were 

statistically different, while 928 probe sets out 

of 2,046 probe related BioCarta were 

statistically different between tumor and non-

tumor samples.  

The Hotelling’s T
2
 method revealed that 105 

KEGG gene sets were significant (p-values less 

than 0.05), while 65 KEGG significant gene sets 

were observed in the Category method. The top 

ten KEGG significant gene sets for two methods 

were shown in table 1.  

}ˆ1,0min(,1min{rr ij
*
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Table 1. The KEGG gene sets with p < 0.05 by the two GSA methods in the prostate cancer dataset. 

 

In BioCarta, the Hotelling’s T
2
 method showed 

that 312 gene sets were significant (p-values 

less than 0.05), while 54 significant gene sets 

were observed in the Category method. The top 

ten BioCarta significant gene sets by the two 

methods were displayed in table 2. 

 

Permutation 

P-value 
Statistics

 
Size KEGG Gene Set 

Category 

0.000 -6.99515 10 DNA replication 1 

0.000 -8.83720 12 Mismatch repair 2 

0.000 -8.26923 47 Primary immunodeficiency 3 

0.000 -12.9652 57 One carbon pool by folate 4 

0.000 -7.46058 13 Tryptophan metabolism 5 

0.000 -7.60349 35 Renin-angiotensin system 6 

0.000 -10.11030 20 Base excision repair 7 

0.000 -5.99054 19 Limonene and pinene degradation 8 

0.002 -9.54988 39 Primary bile acid biosynthesis 9 

0.002 -3.71500 4 Riboflavin metabolism 10 

Hotelling’s T2 

0.000 511.077790 75 Nitrogen metabolism 1 

0.000 506.142051 69 Arginine and proline metabolism 2 

0.000 480.856398 86 Drug metabolism - other enzymes 3 

0.000 477.615468 68 Glyoxylate and dicarboxylate metabolism 4 

0.000 470.832097 78 Starch and sucrose metabolism 5 

0.000 447.099907 70 Glycosphingolipid biosynthesis 6 

0.000 444.186458 78 mTOR signaling pathway 7 

0.000 427.867381 80 Pentose phosphate pathway 8 

0.000 423.784298 84 Caffeine metabolism 9 

0.000 419.313996 71 Linoleic acid metabolism 10 

Table 2. BioCarta gene sets with p < 0.05 by the two GSA methods in the prostate cancer dataset. 

Permutation 

p-value 
Statistic

 
Size BioCarta Gene Set 

Category 

0.000 13.82763 11 Integrin Signaling Pathway 1 

0.000 16.50176 37 
Role of PI3K subunit p85 in regulation of Actin Organization and 

Cell Migration 
2 

0.000 11.09129 29 Role of Erk5 in Neuronal Survival 3 

0.000 13.49084 24 IL12 and Stat4 Dependent Signaling Pathway in Th1 Development 4 

0.000 12.03878 26 VEGF, Hypoxia, and Angiogenesis 5 

0.000 12.19200 27 The information-processing pathway at the IFN-beta enhancer 6 

0.001 9.94616 24 
Inhibition of Huntington's disease neurodegeneration by histone 

deacetylase inhibitors 
7 

0.001 13.56122 26 Oxidative Stress Induced Gene Expression Via Nrf2 8 

0.001 10.24244 16 CXCR4 Signaling Pathway 9 

0.004 6.139434 12 Opposing roles of AIF in Apoptosis and Cell Survival 10 

Hotelling’s T2
 

0.000 336.0954 46 ALK in cardiac myocytes 1 

0.000 326.3753 39 Low-density lipoprotein (LDL) pathway during atherogenesis 2 

0.000 325.3372 44 Agrin in Postsynaptic Differentiation 3 

0.000 312.7743 55 Nuclear Receptors in Lipid Metabolism and Toxicity 4 

0.000 308.0685 37 Electron Transport Reaction in Mitochondria 5 

0.000 299.9156 53 Synaptic Proteins at the Synaptic Junction 6 

0.000 299.1207 32 Antigen Processing and Presentation 7 

0.000 296.0046 26 Ceramide Signaling Pathway 8 

0.000 292.5901 37 Role of BRCA1, BRCA2 and ATR in Cancer Susceptibility 9 

0.000 291.208 37 
Role of PI3K subunit p85 in regulation of Actin Organization and 

Cell Migration 
10 
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We excluded genes present in more than 30 

gene sets in BioCarta. There were no 

relationships between them and prostate cancer 

in Pubmed literatures. The name of these genes 

has been listed in table 3. 

 

DISCUSSION 
     Prostate Cancer is one of the most 

challenging cancers in the medical field and its 

mechanism still remains completely unclear. 

There are more than 20 types of prostate cancer. 

No single theory can provide a perfect 

definition for different cases of this cancer. The 

GSA of microarray data not only shows a 

consistent alteration in a cancer state, but also is 

a valid method to reduce a major deviation. In 

addition, the GSA methods enable us to obtain 

common gene sets by integration differently ex-

pressed genes.  

Hence, we used the GSA methods for 

exploration of genes in prostate cancer which 

are difficult to detect by individual gene 

analysis because of their subtle change. In the 

present study, the Hotelling’s T
2
 and Category 

were applied to prostate cancer dataset to extract 

biological insights involved in this cancer by 

defined gene sets in KEGG and BioCarta. 

Our finding showed that the power of 

multivariate analysis (Hotelling’s T
2
) is more 

than univariate analysis (Category) in KEGG 

and BioCarta. These results were in agreement 

with published findings elsewhere [13, 27-28]. 

This conclusion is anticipated because the 

Hotelling’s T
2
 takes account the complicated 

correlation structure and interaction among 

genes, unlike the Category that is based on 

univariate analysis (t-statistics).   

Our results showed that most of the gene sets 

were associated with prostate cancer. According 

to GSA results, we discussed several 

differentially expressed gene sets and genes 

shared among gene sets which suggested the 

role of these gene sets and genes in prostate 

cancer. The concordance between the results of 

Pubmed articles and KEGG gene sets was more 

than BioCarta gene sets. 

Furthermore, prostate cancer pathway (ID 5215) 

and Transcriptional misregulation in cancers 

(ID 5202) are connected pathways with prostate 

cancer in KEGG. The Thyroid cancer which 

related pathways with Transcriptional 

misregulation in cancer was shown in table 1.  
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