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ABSTRACT 
      Chronic myeloid leukemia (CML) is a myeloproliferative disease of the hematopoietic stem cells, 

characterized by the presence of the Philadelphia (Ph) chromosome. Although imatinib inhibits the BCR-

ABL kinase activity, clinical experiences confirm that imatinib may not target CML stem cells in vivo. The 

identification of signaling pathways responsible for the self-renewal properties of leukemic stem cells in 

CML will help in the discovery of novel therapeutic targets. Here we review signaling pathways including 

Wnt/β-catenin, Hedgehog, Alox5, and Foxo which play crucial roles in the maintenance of stem cell 

functions in CML. It is thought that inhibition of key genes that are part of self-renewal associated signaling 

pathways may provide an effective way to reduce aberrant stem cell renewal in CML. 
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INTRODUCTION  
     Cancer stem cells are a small subpopulation of 

malignant cells identified in a variety of tumors 

(or leukemias) that are defined by their ability to 

undergo self-renewal, as well as multi-lineage 

differentiation, resulting in therapeutic resistance 

and cancer progression. Self-renewal is 

discriminated from other proliferating processes 

since at least one of progeny is identical to the 

primary stem cell. Dysregulation of stem cell self-

renewal is a likely requisite for the initiation, 

progression, and therapeutic resistance of cancer 

[1-5]. The cancer stem cell hypothesis postulates 

that cancers are derived from a self-renewing 

cancer stem cell population that is also capable of 

initiating/maintaining cancer. Thus, according to 

the cancer stem cell hypothesis, these cells with 

the unique self-renewal ability are tumor-

initiating cells that differentiate into non-self-

renewing cells that comprise the bulk of the tumor 

[6-9]. Cancer stem cells were initially identified in 

leukemia [10,11] but has since expanded to solid 

tumors such as brain, breast, pancreas, colon, and 

head and neck cancer [3,12-22]. 

     Chronic myeloid leukemia (CML) is a 

monoclonal myeloproliferative disorder of the 

hematopoietic stem cells, characterized by the 

presence of the Philadelphia (Ph) chromosome 

genetic abnormality which arises from the 

reciprocal translocation t(9; 22) (q34; q11). This 

translocation leads to the fusion of the Breakpoint 

Cluster Region (BCR) gene to the Abelson 

Tyrosine Kinase (ABL1) proto-oncogene and the 

formation of the BCR-ABL oncogene [23,24]. 

Depending on the precise translocation 

breakpoints and differential mRNA splicing, 

various molecular weight isoforms of BCR-ABL 

(P190, P210, and P230 isoforms) are generated. 

The BCR-ABL oncogenes produce a 

constitutively active non-receptor tyrosine kinase 

which deregulates several signal transduction 

pathways that ultimately lead to abnormal cell 

cycling, increased proliferation, and inhibition of 

apoptosis [24-26]. 
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      The natural course of the disease is usually 

characterized by three sequential stages (The 

chronic, accelerated, and blast-crisis). Initially, 

CML is a slowly progressive disease with 

symptoms that usually develop gradually [27]. As 

the disease progresses, the number of blasts in the 

bone marrow and peripheral blood is increased, 

and accelerated phase of the disease will evolve to 

an aggressive acute leukemia, referred to as a 

blast crisis [28], during which progressive 

resistance to therapy is acquired [29,30]. The 

transition from chronic to the accelerated and 

blast phases is presumed to occur due to 

secondary genetic changes [31]. 

 

CML STEM CELLS ARE RESISTANT 

TO BCR-ABL KINASE INHIBITOR 

IMATINIB 
      The development of the BCR-ABL kinase 

inhibitor imatinib was a breakthrough in the 

therapy of chronic-phase CML, establishing 

imatinib as the first-line therapy for newly 

diagnosed CML. A 5 year follow-up of patients 

receiving imatinib as initial therapy demonstrated 

complete hematological response in 98% of the 

treated patients, a complete cytogenetic response 

in 87%, and a complete molecular response in 

about 35%. The study showed a relapse rate of 

17% during continuous treatment and 7% of 

patients progressed to the accelerated phase or 

blast crisis. However, 4% of patients discontinued 

therapy owing to an adverse event [32].  

      Although continuous treatment of chronic-

phase CML with imatinib was found to induce 

durable responses, several reports indicate that 

discontinuation of imatinib therapy even after 

achieving a molecular remission induces a relapse 

of the disease [33-37], and therefore, patients are 

forced to undergo lifelong therapy [33,38-40]. 

Further studies have been shown that BCR-ABL-

positive leukemic stem cells are relatively 

resistant to therapies that target rapidly dividing 

cells, and thus contribute to avoid apoptosis, 

renew themselves, and survive long term [41-43]. 

This is supported because BCR-ABL-positive 

leukemic stem cells remain present in the 

patient’s bone marrow even after long-term 

treatment with imatinib and can cause relapse of 

the disease [44,45]. These findings propose that 

inhibition of BCR-ABL tyrosine kinase activity 

alone is insufficient to eradicate leukemic stem 

cells and cannot cure CML. Therefore, 

development of efficient therapeutic strategies 

capable of eradicating CML stem cells would 

provide noticeably improved therapeutic benefits 

to patients suffering CML (Fig. 1) [46-50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. CML stem cells are resistant to BCR-ABL kinase inhibitor imatinib. A. Although tyrosine kinase inhibitor imatinib 

inhibits the BCR-ABL kinase activity and decreases the number of CML cells, it does not target CML stem cells. This leads to 
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relapse of the disease. B. By targeting key genes that are part of the self-renewal associated signaling pathways, it could be possible 

to reduce aberrant stem cell renewal in CML. Residual cells are not able to support cancer and undergo apoptosis or differentiation. 

This strategy may prevent drug resistance and disease recurrence associated with imatinib treatment of CML.  

 

CRITICAL SELF-RENEWAL 

ASSOCIATED SIGNALING PATHWAYS 

IN CML STEM CELLS 
      Since both normal hematopoietic stem cells 

and CML stem cells are capable of self-renewing, 

it is not surprising that several signaling pathways 

which are involved in the regulation of normal 

stem cells may play significant roles in cancer 

stem cell biology. It has been shown that BCR-

ABL promotes self-renewal of leukemic stem 

cells because all critical signaling pathways 

involved in the maintenance of survival of 

leukemic stem cells can be activated by BCR-

ABL [51]. However, BCR-ABL oncogene cannot 

confer self-renewal capacity to committed 

progenitors to transform them and therefore rather 

utilizes and enhances the self-renewal properties 

inherent in existing self-renewing cells (i.e., 

hematopoietic stem cells) [52,53]. Here we review 

molecular pathways involved in the regulation of 

self-renewal properties in leukemic stem cells, 

and discuss their implication in regulating 

leukemic stem cell functions in CML. These self-

renewal associated signaling pathways include 

Wnt/β-catenin, Hedgehog, Alox5, Foxo, and 

others. 

 

WNT/β-CATENIN SIGNALING 

PATHWAY 
      The Wnt/β-catenin signaling pathway is 

involved in self-renewal of both normal 

hematopoietic stem cells and CML stem cells [54-

57]. In blast crisis CML patients, β-catenin is 

activated in myeloid progenitors and the leukemic 

stem cells, which resemble granulocyte 

macrophage-progenitors (GMPs) have aberrant 

activation of β-catenin via canonical Wnt 

signaling pathway [58].  

      Using a β-catenin-deficient mice model of 

CML, Zhao et al [59] demonstrated dependence 

of in vivo myeloid leukemia progression on β-

catenin. They were able to show that loss of β-

catenin impairs self-renewal of CML stem cells in 

vivo and subsequently reduces in vivo progression 

of CML, whereas it allows normal development 

of acute lymphoblastic leukemia (ALL). As CML 

is thought to be initiated in hematopoietic stem 

cells and ALL may be initiated in committed 

progenitors, these findings proposed that β-

catenin is required for BCR-ABL-induced 

leukemias that originate in stem cells. Another 

study led by Hu et al [60] showed that β-catenin is 

essential for the maintenance of leukemic stem 

cells resistant to tyrosine kinase inhibition in mice 

model of CML. Delayed development of CML 

due to loss of β-catenin is attributed to a reduced 

ability of BCR-ABL to support long-term self-

renewal property of leukemic stem cells. Overall, 

these findings suggest that Wnt signaling could be 

considered as a promising therapeutic target for 

curing CML. 

 

HEDGEHOG SIGNALING PATHWAY 
      Hedgehog (Hh) signaling is a highly 

conserved developmental pathway which 

regulates self-renewal of normal hematopoietic 

stem cells and CML stem cells [61-64]. Hh 

signaling is triggered by the binding of the Hh 

protein ligands (Sonic hedgehog [Shh], Indian 

hedgehog [Ihh], and Desert Hh [Dhh]) to the 12 

transmembrane receptor patched (PTCH), which 

is a negative regulator of the seven 

transmembrane receptor smoothened (Smo). 

Upon ligand binding, the inhibitory effect on Smo 

is relived. This signaling event leads to the 

induction of Gli transcription factors, which 

promotes transcription of Hh-responsive genes 

such as Gli1, Ptch1, cyclin D1, and Bcl-2 [65-69]. 

      Hh signaling has been proven as a functional 

pathway for leukemic stem cells, and loss of this 

pathway impairs CML progression [38,70,71]. 

Dierks et al [38] indicated that Smo, which is 

specifically upregulated in BCR-ABL-positive 

cells, is essential for the expansion of the 

leukemic stem cell pool. While lack of Smo had 

no effect on long-term reconstitution of normal 

hematopoiesis, the absence of Smo expression 
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effectively reduced the development of BCR-

ABL-positive leukemias in mice. Moreover, 

pharmacological inhibition of Hh signaling had no 

effect on regular hematopoiesis but reduced 

leukemic stem cells in vivo and enhanced time to 

relapse of the disease. Supporting the previous 

study, Zhao et al [71] have shown that the loss of 

Smo impaired hematopoietic stem cell renewal 

and decreased induction of CML by the BCR-

ABL oncoprotein. Loss of Smo caused depletion 

of CML stem cells, whereas overexpression of 

Smo led to an increased percentage of CML stem 

cells and accelerates the progression of disease. 

As a possible mechanism, the inhibitory effects of 

the Smo deletion on leukemic stem cells might be 

attributed to the regulation of the cell fate 

determinant Numb, because the Smo deletion 

leads to an increase in the expression levels of 

Numb, which depletes CML stem cells. Taken 

together, these findings suggest that Hh inhibition 

might be a promising therapeutic strategy to 

reduce the leukemic stem cell pool in drug 

resistant CML. 

 

ALOX5 SIGNALING PATHWAY 
      The arachidonate 5-lipoxygenase (5-LO) gene 

(Alox5) has been shown to be involved in several 

physiological and pathological process including 

oxidative stress response, inflammation, and 

cancer [72-74]. Alox5 function has been 

implicated in several critical signaling pathways 

such as p53 [72], NF-kB [75], and PI3k [75]. It 

has been also found that Alox5 is a critical 

regulator for leukemic stem cells and its function 

is essential for the induction of CML by BCR-

ABL.  

      Transcriptional analysis-based studies have 

shown that Alox5 is differentially expressed in 

human CD34+ CML cells compared to their 

normal counterparts, proposing a possible role of 

Alox5 in CML stem cells [76]. A microarray 

analysis of gene expression in leukemic stem cells 

in mice model of CML indicated that the Alox5 

gene was upregulated by BCR-ABL and this 

upregulation was not abolished by BCR-ABL 

kinase inhibitors [77]. This at least partially 

explains why imatinib had no effect on leukemic 

stem cells in mice model of CML [45]. It has been 

shown that the Alox5 deficiency impaired the 

function of leukemic stem cells through affecting 

differentiation, cell division, and survival of 

leukemic stem cells, consequently causing a 

gradual depletion of leukemic stem cells. This 

explains why BCR-ABL failed to induce CML in 

mice in the absence of Alox5 [72,74,77-79]. 

Importantly, the lack of Aox5 had no significant 

effect on the function of normal hematopoietic 

stem cells, suggesting a possible mechanism for 

how hematopoietic stem cells and leukemic stem 

cells distinctly self-renew and differentiate 

[77,80]. Altogether, these findings proposed that 

Alox5 could be a specific target gene in CML 

stem cells for developing curative therapies. 

 

FOXO SIGNALING PATHWAY 
      Forkhead box class O (Foxo) transcription 

factors are involved in the maintenance of normal 

hematopoietic stem cells and CML stem cells. 

There are four members (Foxo1, Foxo3a, Foxo4, 

and Foxo6), all of which are functional 

downstream targets of phosphatidylinositol 3 

kinase (PI3K)-AKT pathway [81-83]. In the 

absence of stimulation by growth factors or 

insulin, Foxos localize to the nucleus and activate 

their transcriptional targets regulating oxidative 

stress responses, cell cycle progression, and 

apoptosis [84-86]. Upon growth factor or insulin 

binds to the cell surface receptor, AKT is 

activated and directly phosphorylates Foxo 

members, leading to the exclusion of Foxo 

members from the nucleus and suppression of 

Foxo transcriptional activity. In the cytoplasm, 

Foxo members are degraded [87-89]. 

      Tothova et al [82] demonstrated that Foxos 

are critical mediators of hematopoietic stem cell 

resistance to physiologic oxidative stress and that 

triple conditional deletion of Foxo1, Foxo3a, and 

Foxo4 in mice leads to a significant increase in 

the hematopoietic stem cell population. Several 

studies showed that Foxo3a alone is essential to 

maintenance the self-renewal capacity of normal 

hematopoietic stem cells and CML stem cells 

[83,90,91]. High levels of Akt phosphorylation 

and cytoplasmic localization of Foxo3a have been 

found in non-CML stem cells. In contrast, cells 

with low levels of Akt phosphorylation and 
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nuclear localization of Foxo3a were enriched in 

the CML stem cell population [90]. Foxo3a 

deficient mice showed a reduction of leukemic 

stem cells after serial transplantation in BCR-

ABL driven CML mouse model. This was 

associated with decreased ability of leukemic 

stem cells to promote disease in vivo. These 

results suggest that Foxo3a is essential for long-

term maintenance of leukemia-initiating potential 

in CML stem cells [90] and that targeting Foxo 

transcription factors might be a potential 

therapeutic approach to eradicate leukemic stem 

cells in CML. 

  

THE NECESSITY OF TARGETING 

MOLECULAR PATHWAYS IN CML 

STEM CELLS 
      Since both hematopoietic stem cells and CML 

stem cells may share many survival signaling 

pathways, elucidation of the hematopoietic 

developmental stage of survival gene expression 

will be important for developing therapies which 

specifically target cancer stem cells while sparing 

normal stem cells. Moreover, by targeting key 

genes that are part of the self-renewal associated 

signaling pathways, it could be possible to reduce 

aberrant stem cell renewal in CML. This strategy 

may prevent drug resistance and disease 

recurrence associated with imatinib treatment of 

CML [45,92-96].  

 

MICRORNA 
      MicroRNAs (miRNAs or miRs) are a novel 

class of small non-coding regulatory RNAs which 

control gene expression at the post-transcriptional 

levels. The official miRNA database miRBase 

lists that up to 30% of human genome is 

controlled by miRNAs. There is currently 

intensive research aimed at identifying all 

miRNAs, their target mRNAs and their biological 

functions [97-99]. MiRNAs have been shown to 

become involved in a variety of biological 

processes such as cellular proliferation, 

differentiation, apoptosis, and maintenance of 

stem cell potency [97,100-103]. Certain miRNAs 

have been shown to be aberrantly expressed 

human cancers and a large body of evidence 

points to their critical roles as oncogenes and 

tumor suppressors in the development of various 

human malignancies including leukemias [104-

108]. Moreover, it seems that aberrant expression 

of certain miRNAs results in dysregulation of 

stem cell genes which, in turn, causes an increase 

in self-renewal potential of cancer stem cells 

[109,110]. Understanding the biological functions 

of miRNAs will require the identification of their 

multiple targets and the pathways that they 

control. 

 

BIOGENESIS, PROCESSING AND 

FUNCTION OF MICRORNAS 
      MiRNAs are first transcribed by RNA 

polymerase II or III as primary miRNAs (pri-

miRNAs), which are RNA hairpin structures up to 

several thousand nucleotides in length. In the 

nucleus, pri-miRNAs are processed by the 

“microprocessor complex” which consists of 

RNase III endonuclease Drosha bound to 

accessory protein DiGeorge syndrome critical 

region 8 (DGCR8). This converts pri-miRNAs to 

intermediate stem-loop structures approximately 

70 nucleotides long called “precursor miRNAs” 

(pre-miRNAs) [111,112]. Following nuclear 

processing, pre-miRNAs are exported to the 

cytoplasm by exportin-5 in a GTP-dependent 

manner. The pre-miRNAs are subsequently 

processed by the cytoplasmic RNase III 

endonuclease Dicer, releasing double-stranded 

mature miRNAs. The strand which becomes the 

mature miRNA is the one whose 5’ end is more 

unstable, thus more easily unwind by the helicase. 

Another strand is released and subsequently 

degraded in the cytoplasm. Mature miRNA is 

incorporated into the RNA-induced silencing 

complex (RISC), the effector of RNA interference 

(RNAi) pathway [99,100,113].  

      The RISC-miRNA complex typically 

recognizes and targets the 3’-untranslated region 

(3’-UTR) of specific mRNAs bearing a perfectly 

complementary target site for degradation or can 

repress the translation of an mRNA that contains 

several partly mismatched target sites [114]. 

Recently, however, evidence indicates that 

miRNAs can also regulate gene expression 

through binding “seedless” 3’-UTR miRNA 

recognition elements [115] or by binding to sites 
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located within the coding regions of transcript 

[116]. 

 

 

MICRORNA INVOLVEMENT IN CML 
      MicroRNA involvement in CML presents an 

additional layer of complexity to understanding 

the development and progression of the disease. 

The involvement of miRNAs in the regulation of 

several cellular processes altered in CML, such as 

cell cycle, apoptosis, and adhesion [107], 

establishes these small RNA molecules as 

potential players in pathogenesis of CML. 

Functional analysis of individual miRNA is 

necessary to understand altered cellular process. 

The first evidence for the involvement of 

miRNAs in hematologic malignancies was 

described in chronic lymphocytic leukemia (CLL) 

[117]. Subsequent miRNA expression profiling 

studies based on sequencing [118,119], 

microarray [117,120], and quantitative real-time 

PCR [120-122] revealed miRNA signatures 

characterizing ALL, acute promyelocytic 

leukemia (APL), and acute myeloid leukemia 

(AML) associated with various cytogenetic 

abnormalities [123-125]. Information about the 

involvement of miRNAs in CML pathogenesis is 

restricted to the description of downregulation of 

certain miRNAs (miR-15a, miR-16-1, miR-155, 

miR-181, miR-221, and let-7a) in the CML cell 

line k562 [104,126,127] and upregulation of miR-

17-92 in CML patients [128]. 

      Venturini et al [128] were able to show that 

expression of the polycistronic miR-17-92 cluster 

which is transcriptionally regulated by c-MYC, 

are increased in CML CD34+ cells from patients 

in chronic phase but not in blast crisis compared 

with normal CD34+ cells, suggesting  a BCR-

ABL-c-MYC-miR-17-92 pathway in CML cells. 

Agirre et al [126] identified an abnormal miRNA 

expression profile in mononuclear and CD34+ 

cells from patients with CML compared with 

healthy controls. Expression analysis of 157 

miRNAs in patients with newly diagnosed CML 

revealed that miR-10a, miR-150, and miR-151 

were downregulated, whereas miR-96 was 

upregulated in CML cells. Interestingly, this study 

showed that downregulation of miR-10a was not 

dependent on BCR-ABL activity and resulted in 

the increased upstream stimulator factor 2 

transcription factor (USF2)-mediated cell growth 

of CML cells, supporting the potential role of a 

miRNA in the abnormal behavior of CML.  

      MiR-15a and miR-16-1, two p53-induced 

miRNAs with tumor suppressive activity, 

negatively regulate expression of the anti-

apoptotic proto-oncogene Bcl-2 at the 

posttranscriptional level, inducing apoptosis in 

leukemic cells [129]. It has been shown that Bcl-2 

overexpression results in the prevention of 

apoptosis which, in turn, leads to an increase in 

number and repopulation potential of stem cells in 

vivo [130,131]. Therefore, it seems that apoptosis 

has a possible role in regulating the 

microenvironments of stem cells. This highlights 

the importance of the Bcl-2 signaling pathway for 

the survival of stem cells and suggests a possible 

role for miR-15a/16-1 in regulating apoptosis in 

stem cells. 

      It seems that miRNA antagonists, referred as 

“antagomiRs”, can block the oncogenic properties 

of the miRNAs and miRNA mimics can restore 

the expression levels of miRNAs with tumor 

suppressive activity [132-138]. Therefore, 

miRNAs could be considered as promising 

therapeutic targets in addressing cancer stem cell 

dysregulation. 

 

CONCLUSION AND FUTURE 

PERSPECTIVES 
The identification of key genes that are part of 

self-renewal signaling pathways in CML stem 

cells provides new opportunities in the future of 

leukemia therapy. As aberrant expressions of 

miRNAs are associated with cancer stem cell 

dysregulation, it seems that miRNA-based 

molecular leukemia therapy eliminates the self-

renewal capabilities of CML stem cells. 

Obviously, further investigations are needed to 

gain more insights into the therapeutic potential of 

miRNAs against cancer progression, resistance, 

and relapse. 
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