Detection of *Sea, Seb, Sec, Seq* genes in *staphylococcus aureus* isolated from nasal carriers in Tehran province, Iran; by multiplex PCR

Mojtaba Saadati^{1,2*}, Babak Barati¹, Mohammad Doroudian³, Hadi Shirzad¹, Mehrdad Hashemi⁴, Saed Mostafa Hosseini², Ahmad Reza Salehi Chaleshtari¹, Mirza-Khalil Bahmani⁵, Saeid Hosseinzadeh⁶, Saber Imani¹

² Applied Biotechnology and Environmental Research Center, Baqiyatallah Medical Science University, Tehran, Iran

³ Young Researchers Club, Islamic Azad University, Tehran-Markaz Unit,15655/461 Tehran, Iran

⁴Department of Genetics, Islamic Azad University. Tehran Medical Branch, Tehran, Iran

⁵ Enviroement and Biotechnology Department, Baghiatalah Hospital, Tehran, Iran

⁶ Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

*Corresponding Author: email address: Saadati_m@yahoo.com (M. Saadati)

ABSTRACT

Staphylococcus(S.) aureus produces different extra-cellular protein toxins and virulence factors. One of the most important extra-cellular proteins is an enterotoxin which causes staphylococcal food poisoning (SFP) due to their enterotoxins. Different methods have been used to detect this toxin, each of which has advantages and disadvantages. DNA amplification methods, however, can show the presence of enterotoxigenic strains of *S. aureus* before the expression of enterotoxins on the basis of specific gene sequences. In this study, 150 *S. aureus* strains isolated from nasal carriers were confirmed by biochemical testing. PCR was used to amplify the staphylococcal enterotoxin A, B, C and Q genes, as well as the staphylococcal nuclease gene. Among the 150 healthy human isolates from the nasal carrier, 95 were confirmed as *S. aureus*. Only 58.9% of the isolates were diagnosed as *sea, b, c, q* positive. There were 24 (25.3%) isolates associated with the *sea* gene, 15.8% isolates associated with the *seb* gene, 9.5% of the isolates were associated with the *sec* gene, and 8.4% of the isolates associated with the *see* (178 bp) and *sed* (319 bp) genes. The *nuc* gene, which encodes thermo nuclease, was used as a target DNA to identify *S. aureus*. Additionally, one of these enterotoxigenic isolates carried more than one toxin gene.

Keywords: Staphylococcus aureus; Enterotoxin; Multiplex PCR; Healthy Carrier; Iran

INTRODUCTION

Staphylococcus aureus, the most important genus of the micrococcacea family, could, under certain conditions, cause food poisoning and severe infections in both animals and human beings by the enterotoxins it produces [1-3]. There are several types of staphylococcal enterotoxins: SEA, SEB, SEC1, SEC2, SEC3, SED and SEE. Recently, additional enterotoxins such as: SEO, SEP, SEQ, SEG, SHE, SEI, SEJ, SEK, SEL, SEM and SEN have been identified by new methods [4-6]. It was found that some strains of S. aureus produce more than one type of enterotoxin [7]. Therefore, the presence of S. aureus in food can be a potential risk for health, particularly, if the food is not stored at a prescribed temperature.

Most important specifications of staphylococcal entrotoxins are the resistance to heat, pepsin digestion and superantigenicity [8].Symptoms of staphylococcal entrotoxin infection are: increased saliva, vomiting abdominal cramping, and diarrhea which can be accompanied by blood in some cases [9]. Approximately 5% of food poisoning illnesses are estimated to occur by this bacterial entrotoxin [10], with more illnesses reported [11-13]. It was reported by Bergdoll that staphylococcal enterotoxin types A, B, C, D and E were the cause of 95% of S. aureus infections and the remaining 5% were a result of infections from other types of bacteria [13].Several reports on the isolation and detection of entotoxigenic in food, healthy individuals carriers, infections and fecal have been written. In all, commonly used methods

¹ Department of Biology, Imam Houssein University, Tehran, Iran

for identifying bacterial toxins, such as latex agglutination, ELISA, immunodiffusion and RIA; a specific situation for enterotoxin gene expression is necessary [14-16], while it is possible that despite the presence of a potential toxin producing gene. in specific circumstances the bacteria are unable to produce toxin which would lead to negative results. Hence, efforts have been made by researchers to replace serological and biochemical methods by diagnostic molecular methods, by which the gene encoding for toxin would be, strains producing low level of entrotoxin to immunologic methods, low level of entrotoxin producing strain, could be identified by this method [7, 17, 18]. The aim of this study was to develop PCR to determine the presence of genes for staphylococcal enterotoxins from 150 samples. In this study, undertaken for the first time in Iran, S. aureus was isolated and the percentages of different strains that contained genes encoding types A, B, C, and Q entrotoxin were identified.

MATERIALS AND METHODS Bacterial strains

Bacterial strains used included *S. aureus* strains characterized as positive for staphylococcal enterotoxin. Other strains used were: non-enterotoxic *S. aureus* (ATCC: 25923), *S. pyogenes*, *S. epidermids*, *B. cereus* (ATCC: 11778), *B. polymyxa* (ATCC: 8094), *S. paratyphi* A (NCTC: 5702), *E. coli*, *P*. vulgaris OX19 (ATCC: 6380), Y. pseudo tuberculosis (PCTC: 1070), and M. luteus (ATCC: 9341). These strains were used as either reference strains or controls in evaluating the specificity of the PCR primers. All strains were obtained from the Iranian Research Organization for Science and Technology (IROST). In this experimental study, nasal mucosal samples obtained by sterile swabs were prepared from 150 healthy carriers and cultured in mannitol salt agar media before being identified by biochemical testing. (Approval of study by university Institutional Review Board), informed consents were signed by patients who agreed to have nasal mucosal samples taken.

PCR primer design

Seven PCR primers sets were used to detect the deoxyribonuclease gene (*Nuc*) Specific for *S. aureus*, staphylococcal enterotoxin a gene (*Sea*), staphylococcal enterotoxin C gene (*Seb*), staphylococcal enterotoxin D gene (*Sec*), staphylococcal enterotoxin E gene (*See*) and staphylococcal enterotoxin Q gene (*See*) as described by Barati et al. [17] and Omoe et al. [7].

Primers were synthesized by MWG Company (Germany) (Table.1).

Table 1. PCR primers sets were used to detect genes Nuc, Sea, Seb, Sec, Sed, See and Aeq

Gene	Primer	Oligonucleotide sequence(5'-3')	Size of amplified product (bp)
пис	NUC1 NUC2	5' CTG GCA TAT GTA TGG CAA TTG 3' 5' AAT GCA CTT GCT TCA GGA CC 3'	397 bp
sea	SEA 1 SEA2	5' TTG CGA AAA AAG TCT GAA TTG C 3' 5' ATT AAC CGA AGG TTC TGT AGA AGT A 3'	552 bp
seb	SEB1 SEB2	5' TCG CAT CAA ACT GAC AAA CG 3' 5'AGG TAC TCT ATA AGT GCC TGC CT 3'	477 bp
sec	SEC1 SEC2	5' CTC AAG AAC TAG ACA TAA AAG CTA GG 3' 5' TTA TAT CAA AAT CGG ATT AAC ATT ATC 3'	271 bp
sed	SED1 SED2	5' CTA GTT TGG TAA TAT CTC CTT TAA ACG 3' 5'TTA ATG CTA TAT CTT ATA GGG TAA ACA TC3'	319 bp
see	SEE1 SEE2	5'CAG TAC CTA TAG ATA AAG TTA AAA CAA GC 5' TAA CTT ACC GTG GAC CCT TCA G 3'	178 bp
seq	SEQ 1 SEQ 2	5' AAT CTC TGG GTC AAT GGT AAG C 3' 5'TTG TAT TCG TTT TGT AGG TAT TTT CG 3'	122bp

according to the phenol-alcohol form extraction method. Before use, total genomic DNA were suspended in TE (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA) buffer and stored at 4° C. To evaluate the quality of extracted DNA, it was located on a 1% agarose gel electrophoresed in 1X TBE (Tris-Borate-EDTE) buffer at 50 volts and then stained with ethidium bromide before being photographed by using ultraviolet illumination.

PCR amplification

The amplification reaction was performed in a final volume of 25μ l, containing 1μ l of genomic DNA, 0.5 μ l of Taq polymerase (5 unit/ μ l), 0.5 μ l of each of the primers (20 pmol/ μ l), 2 μ l each of 2.5 mM dATP, dTTP, dCTP and dGTP, 2.5 μ l of 10X PCR buffer (50 mM KCl), 10Mm Tris-HCl (pH 8.3 at 25 °C), and 1.5 μ l of MgCl₂ (50 mM).

A total of 32 cycles was performed with the first denaturation at 94 °C for 3 min and the final extension at 72°C for 3 min. The amplified products were analyzed by electrophoresis with a 1% agarose gel followed by ethidium bromide staining and UV-transilluminator visualization.

Determination of specificity and sensitivity of the PCR reaction

To determine specificity, PCR was performed with purified extracted genomes from 11 bacteria, including strains of: *M. luteus, S. pyogensis, B. cereus, B. polymixia, S. paratyphi A, Y. pseudotuberculosis, E. coli, P. vulgaris, S. aureus* type *A*, and *S. epidermidis.* Sensitivity of the reaction was based on the numbers of bacteria. In this regard, after

Inoculating bacteria in nutrient broth media, serial dilutions up to 10^{-9} (15 cells μ l⁻¹) were prepared and PCR reaction was accomplished for all dilutions, followed by colony counting for each.

RESULTS

In this investigation, 150 samples were obtained from 150 healthy carriers, of which 95 samples of *S. aureus* were detected biochemically. DNA extraction and PCR reaction with pre-prepared primers were then performed.

To detect *S. aureus* types a, b, c and q enterotoxins:

A total of 95 S. aureus strains originating from nasal carriers were tested for enterotoxin production by PCR assay. The specificity of PCR was tested for the positive and negative control strains. The six SE-encoding genes (sea, seb, sec, sed, see and seq) were detected in the positive control strains and not in the negative control strains (Fig 1). In addition, DNA sequences of all PCR products showed complete agreement with the sequences of the corresponding region of each SE-encoding gene (data not shown). Therefore, the six pairs of primers designed in this study were determined to be completely specific for each SE-encoding gene. PCR reaction with specific primers for nuc, sea, seb, sec, sed, see and seq genes were performed by which the existence of a 397 bp segment of nus gene amplification led to the detection of S. aureus (Fig.1, lane 5). Furthermore, a 271 bp segment was related to the amplification of a specific fragment of gene sec that is responsible for enterotoxin type C (Fig.1, lane 4). DNA amplification fragments of 397 bp for the staphylococcal nuclease gene (nuc) (Fig.1, lane 3), 552 bp for staphylococcal enterotoxin A gene (sea) (Fig.1, lane 5), 477 bp for staphylococcal enterotoxin B gene (seb) (Fig.1, lane 2), 271 bp for staphylococcal enterotoxin C gene (*sec*) (Fig.1, lane 4) and 122 bp for staphylococcal enterotoxin Q gene (seq) (Fig.1, lanes 5, 6 and 8) were confirmed by digestion enzymes. S. epidermidis was used as a negative control and did not yield a PCR product (Fig.1, lane 7).

Specificity and sensitivity of the reaction

When different strains of bacteria, such as luteus (ATCC=9341), S. pyogenes М. (reference lab), B. cereus, B. polymixe, S. parathify A, Y. pseudo tuberculosis, E. coli, P. vulgaris, S. aureus strain type A and S. epidermidis were assayed with primers nuc (Fig. 2, lanes 2 through 11), only the S. aureus (lanes 2 and 10) generated positive PCR results. In order to test the sensitivity of the method, decided dilution series of entrotoxigenic S. aureus bacterial cultures $(4 \times 10^3$ to 60 cells µl⁻¹) were proposed. As depicted in Fig.3, PCR reaction was performed for dilutions of 125 cells and more of which the results of PCR products were observed on

1% agarose gel as 552 bp segments (data not shown). There was no band for dilutions of less than 125 cells (data not shown).

Therefore, the results of this experiment showed that under experimental conditions, DNA from 1.25×10^2 CFU/ml of the target cells could be detected (data not shown). In an attempt to determine the incidence of newly identified enterotoxins in SFP outbreaks in Iran, we obtained 150 *S. aureus* strains isolated from nasal carriers by using cotton swabs. Of these, 56 strains were positive for classical enterotoxins, *sea, seb, sec*, and *seq*. Results showed that twenty four (25.3%) isolates were associated with the *sea* gene, fifteen (15.8%) isolates were associated with the *seb* gene, nine (9.5%) isolates were associated with the *sec* gene, eight (8.4%) isolates were associated with the *seq* gene and thirty-nine (41%) of these isolates might have possessed other *se* genes but which were not *see* and *sed* (319 genes). Only one of these 95 isolates harbored *sec* and *sea*. The *nuc* gene, which encodes thermonuclease was used as a target DNA to identify *S. aureus*.

Fig1. Gel analysis of PCR-amplified toxin gene sequences. The individual toxin gene products were characterized by comparing them with a standard molecular size marker. Lanes 1 and 9, DNA ladder; lane 2, SEB (477 bp); lane 3, *nuc* (397 bp); lane 4, SEC (271 bp); lane 5, SEA and SEQ (552 bp and 122 bp); Lane 6, SEQ (122 bp); Lane 7, *S. epidermidis*; Lane 8, SEQ (122 bp).

Fig 2. Gel electrophoresis of PCR with *nuc1* and *nuc2* genes in nine species of bacteria. Lane 1: DNA Wight Marker Lane 2: S. *aureus* ATCC=25923 Lane3: *Bacillus polymixa* ATCC = 10401 NCIB = 8094 Lane 4: *B. cereus* ATCC = 11778 NCTC=10320 Lane 5: <u>M. luteus</u> ATCC =9341 Lane 6: *Strep. pyogenes* Lane 7: *P. vulgaris*, strain ox19 ATCC=6380 Lane 8: S. *Typhimurium* NCTC=5702 Lane 9: *E. coli* O111 Lane 10: *S. aureus* PCTC=1070 RI=273 Lane 11: Y. pseudo tuberculosis

DISCUSSION

We have described a multiplex PCR-based diagnostic protocol to detect the genes for enterotoxins *a*, *b*, *c*, *d*, *e* and *q* from human strains of *S. aureus*. These tests have variable sensitivities and depend on adequate gene expression for reliability and reproducibility.

Several methods have been used for detection and typing of these genes. It is detect gene possible to products immunologically by using a variety of enzyme-linked immunosorbent assays and radioimmunoassays [7,16,19], but these methods have some disadvantages. For example, misidentification by immunologic methods could easily occur because toxigenic strains of S. aureus have low levels of excreted toxin(s) or cross-reactive antigens. Also ELISA kits are commercially available but time-consuming and expensive, in addition to limitations in antigen detection and crossreactions with other types of enterotoxins [16].

Other methods for gene identification, such as DNA hybridization, have been used to analvze strains for the presence of staphylococcal toxin genes. PCR has an advantage over DNA hybridization in that the sensitivity is sufficient to allow for detection of microbial DNA directly in pathological specimens [20-22]. Also, PCR can be performed by using whole bacterial cells without DNA extraction [7]; coupled with pre enrichment growth before the PCR, it dilutes out DNA not being biologically duplicated and permits the identification of organisms in samples containing numbers of pathogenic bacteria undetectable by other routine methods [23]. During the last decade, many studies extremely high capacity of have shown the and PCR for specifically detecting bacteria authors have already genes of interest. Several shown the feasibility of the PCR methodology for the identification of S. aureus strains [24]. On the other hand, different studies have also shown the applicability of PCR to the detection of staphylococcal enterotoxin genes. Reported results by Holechava et al. indicate that there is no difference between RIA. PCR and dot-blot in detection of S. aureus strains [25], although dot-blot hybridization and RIA more expensive than are PCR. PCR identification of S. aureus has been based on

the detection of different specific target sequences such as *nuc*. The *nuc* gene was used as a target DNA to identify *S. aureus* [19,21, 26].

In this study, multiplex PCR was performed on distinct healthy carriers of S. aureus and typing of bacterium. Studies have focused on mostly S. aureus type A rather than the other types, including type C. In Iran, there is mostly an incidence of type A gastroenteritis [12].A 2002 study in Slovakia by Beate Holeckara isolated 43 S. aureus strains from various food samples (sausage and noodle soup), of which fifteen strains (34.88%) were proven to be enterotoxogenic by multiple PCR. Among these seven strains (16.28%) possessed the enterotoxin type A gene [25]. The see genotype was classified into 12 genotypes. Letertre et al. (2003) has shown that eighteen strains of S. aureus possessed only one kind of se gene (sea, sec or seh), the remaining 39 isolates harboured more than one se gene. The sea gene was found in 58% (33 out of 57) isolates; eleven strains had sea alone and twenty-two had sea together with other se genes [24]. Coexistence of sea, seb, and sec, sed with seg, seh and sei has been reported by other laboratories [7] in this study, among the 150 healthy human isolates from nasal carriers, 95 isolates were confirmed as S. aureus. Only 58.9% of the isolates were diagnosed as *sea*, *b*, c, and q positive. The variation in reported rates results, at least partly, from differences in study populations, sampling and culture techniques, and criteria for the definition of persistent or intermittent carriers. [27]. Nasal Carrier of S. aureus have been identified as risk factors for community-acquired and nosocomial infections. Cole et al. in 2001 screened 230 donors of diverse ethnic and socioeconomic backgrounds and identified 62 (27%) whose nasal secretions were colonized by S. aureus [28]. The anterior nares have proven to be the primary reservoir of S. aureus in humans [29]. S. aureus nasal Carrier has been extensively studied in patients and healthy individuals [28]. Different studies shown that carrier patterns differ between individuals, and that 10 to 35% of individuals carry S. aureus persistently, 20 to 75% carry S. aureus intermittently, and 5 to 70% are persistently free of S. aureus (noncarriers)

[27,29].In conclusion, this study offered novel PCR primers specific for the detection of *sea*, *seb*, *sec*, and *seq*, genes of *S. aureus*. These primers could be used for an epidemiological study of the hazardous *S. aureus* in food-poisoning outbreaks. The identification of staphylococcal toxin genes in strains of *S. aureus* by PCR offers a very specific, sensitive, relatively rapid, and inexpensive alternative to traditional immunological assays which depend on adequate gene expression for reliability and sensitivity.

CONCLUSION

PCR Detection for encoded toxic genes in *Staphylococcus aureus* is simple, low cost, rapid and Very specific; in addition can identify several genes that encode toxin in the same time.

REFERENCES

1. Argudín MÁ, Mendoza MC, Rodicio MR. Exotoxins of *Staphylococcus aureus*. Toxins 2010; 2: 1751-1773

2. Verkaik NJ, Dauwalder O, Antri K, Boubekri I, de Vogel CP, Badiou C. Immunogenicity of toxins during Staphylococcus aureus infection. Clin Infect Dis 2010; 50: 61-8

3. Su YC, Wong ACL. Identification and purification of a new staphylococcal enterotoxin H. Appl Environ Microbiol 1995; 61: 1438–1443

4. Chiang YC. Chang LT, Lin CW, Yang CY, Tsen HY. PCR primers for the detection of staphylococcal enterotoxins K, L. and M and survey of staphylococcal enterotoxin types in *Staphylococcus aureus* isolates from food poisoning cases in Taiwan. J Food Prot 2006; 69: 1072-9

5. Orwin PM, Fitzgerald JR, Leung DYM, Gutierrez JA, Bohach GA, Schlievert PM. Characterization of *Staphylococcus aureus* enterotoxin L. Infect Immun 2003; 71: 2916-2919

6. Momtaz H, Rahimi E, Tajbakhsh E. Detection of some virulence factors in Staphylococcus aureus isolated from clinical and subclinical bovine mastitis in Ira. A J B 2010; 9: 3753-3758

7. Omoe K, Ishikawa M, Shimoda Y, Hu D, Ueda S, Shinagawa K. Detection of *seg*, *seh*, and *sei* genes in *Staphylococcus aureus* isolates and determination of the enterotoxin productivities of *S. aureus* isolates harboring *seg, seh*, or *sei* genes. J Clin Microbiol 2002; 40: 857-862

8. Loir YL, Baron F, Gautier M. Review. *Staphylococcus aureus* and food poisoning. G M R 2003; 2: 63-76

9. Irina V, Ellen J Victor E. Staphylococcal Enterotoxins. Toxins 2010; 2: 2177-2197

10. Alefantis T, Grewal P, Ashton J, Khan AS, Valdes JJ, Del Vecchio VG. A rapid and sensitive magnetic bead-based immunoassay for the detection of staphylococcal enterotoxin B for high-through put screening. Mol Cell Probes 2004; 18: 379-82

11. Sattari M, Rahimi Milashi M, Zavaran Hosseini A, Samimi R. Evaluation of Staphylococcal contamination on dairy products and antibiotic resistance pattern in Tehran. Modarres Journal of Medical Sciences 1998; 2: 63-66

12. Saadati M, Barati B, Shirazi M. Detection of methicillin-resistant *Staphylococcus aureus* type and molecular assay for the simultaneous detection of *sea* and *seb* genes. The 5th National Biotechnology Congress of Iran. 2007; 782

13. Bergdoll MS. Enterotoxins In Easton CSF and Adlam C,(ed). Staphylococci and staphylococcal infections. London, United Kingdom, Academic Press1983; 559-598

14. Wieneke AA, Gilbert RJ. The use of a sandwich ELISA for the detection of staphylococcal enterotoxin A in foods from outbreaks of food poisoning. J Hyg (Lond) 1985; 95: 131-8

15. Medina MB. Development of a fluorescent latex microparticle immunoassay for the detection of staphylococcal enterotoxin B (SEB). J Agric Food Chem 2006; 54: 4937-42

16. Shinagawa K, Watanabe K, Matsusaka N, Konuma H, Sugii S. Enzyme-linked immunosorbent assay for detection of staphylococcal enterotoxins in incriminated foods and clinical specimens from outbreaks of food poisoning. Nippon J uigaku Zasshi 1990; 52: 847-50

17. Barati B, Saadati M, Bahmani MK. Isolation and Detection of enterotoxigenic *Staphylococcus aureus* type A by multiplex PCR. J Military Medicine 2006; 8: 119-128

18. Park CE, Akhtar M, Rayman MK. Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl Environ Microbiol 1992; 58: 2509–2512

19. Fey H, Pfister H, Ruegg O. Comparative evaluation of different enzyme-linked immunosorbent assay systems for the detection of staphylococcal enterotoxins A, B, C, and D. J Clin Microbiol 1984; 19: 34-38

20. Kwon NH, Kim SH, Park KT, Bae WK, Kim JY, Lim JY, et al. Application of extended single-reaction multiplex polymerase chain reaction for toxin typing of Staphylococcus aureus isolates in South Korea. Int J Food Microbiol 2004; 2: 137-145 21. Kuźma K, Malinowski E, Lassa H, Klossowska A. Specific detection of *Staphylococcus* aureus by PCR in intramammary infection. Bull Vet Inst Pulawy 2003; 47: 183-190

22. Chen TR, Chiou CS, Tsen HY. Use of novel PCR primers specific to the genes of staphylococcal enterotoxin G, H, I for the survey of *Staphylococcus aureus* strains isolated from food-poisoning cases and food samples in Taiwan. Int J Food Microbiol 2004; 92: 189-197

23. Dakić I, Vuković D, Stepanović S, Hauschild T, Ježek P, et al. Survey of Genes Encoding Staphylococcal Enterotoxins, Toxic Shock Syndrome Toxin 1, and Exfoliative Toxins in Members of the *Staphylococcus sciuri* Group. J Clin Microbiol 2005; 43: 4875–4876 24. Letertre C, Perelle S, Dilasser F, Fach P. Detection and genotyping by real-time PCR of the staphylococcal enterotoxin genes *sea* to *sej* Molecular and Cellular Probes INT J FOOD MICROBIOL 2003; 17: 139-147

25. Zhang Y, Cheng S, Ding G, Zhu M, Pan X, Zhang L. Molecular analysis and antibiotic resistance investigation of *Staphylococcus aureus*isolates associated with staphylococcal food poisoning and nosocomial infections. A J B 2011; 10 : 2965-2972

26. Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus *aureus* by polymerase chain reaction amplification of the *nuc* gene. J Clin Microbiol 1992; 30: 1654– 1660

27. Vandenbergh MF, Yze rman EP, Van Belkum A, Boelens HA, Sijmons M, Verbrugh HA. Follow-up of *Staphylococcus aureus* nasal Carrier after 8 years: redefining the persistent carrier state. J Clin Microbiol 1999; 37: 3133–3140

28. Cole AM, Tahk S, Oren A, Yoshioka D, Yong-Hwan K, Park A, Ganz T. Determinants of *Staphylococcus aureus* nasal Carrier. Clin Diagn Lab Immunol 2001; 8: 1064–1069

29. Jae-Cheol K, Si-Hyun K, Sun Hee P, Su-Mi CH, Dong-Gun L, et al. Molecular Epidemiologic Analysis of Methicillin-Resistant *Staphylococcus aureus* Isolates from Bacteremia and Nasal Colonization at 10 Intensive Care Units: Multicenter Prospective Study in Korea. J Korean Med Sci 2011; 26: 604–611