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ABSTRACT 

 
     A balance between excitatory and inhibitory neurotransmissions in brain is an essential factor for 

the proper function of the brain. The amino acid gamma-aminobutyric-acid (GABA) is considered as 

the major inhibitory neurotransmitter in brain. Thus, GABAergic neurons play a key role in regulating 

behavior. Previous data have revealed the complex subunit structural design for GABAA receptor 

channel, in which a pentameric assembly resulting from 5 of at least 21 subunits, grouped in the eight 

classes alpha (α1-6), beta (β1-4), gamma (γ1-4), delta, pi (π), epsilon (ε), theta (θ) and rho (ρ1-3) 

permits an immense number of putative receptor isoforms. GABAARs are highly diversed in the 

central nervous system in which this diversity may be related to some mental disorders. Any alteration 

in expression of the GABAA receptor genes causes neurophysiological and functional consequences 

that might be associated with neurological disorders. Some neuropsychiatric disorders, such as 

anxiety, epilepsy and sleep disorders, are effectively treated with therapeutic agents that act on the 

GABAA receptor. In this article, the contribution of GABAA receptor deficits to central nervous 

system disorders, in particular anxiety disorders, epilepsy, schizophrenia and insomnia, will be 

reviewed. The better understanding of GABA and its receptors may help us to find novel therapeutic 

agents for treatment of mental disorder in future research. 
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INTRODUCTION 
     The amino acid gamma-aminobutyric-acid 

(GABA) is the major inhibitory 

neurotransmitter in the CNS [1, 2] that 

mediates most of its effects through receptors 

termed GABAA. Previous data have revealed 

the complex subunits structural design of this 

receptor channel, in which a pentameric 

assembly resulting from five of at least 21 

subunits, grouped in the eight classes alpha 

(α1-6), beta (β1-4), gamma (γ1-4), delta, pi, 

epsilon, theta, and rho (ρ1-3) [3-5] permits an 

immense number of putative receptor 

isoforms. These varieties are extended the 

existence of several splicing variant forms, for 

instance of the α6, β2 and γ2 subunits [6]. The 

subunit combination of GABAA receptor 

determines the specific effects of allosteric 

modulators as benzodiazepines (BZs), 

barbiturates, steroids, and general anaesthetics, 

some convulsants, polyvalent cations, and 

ethanol. These agents act through different 

binding sites some of which are not identified 

yet [7, 8]. Drugs and endogenous ligands bind 

either to the extracellular domain or channel 

domain of the GABAA receptors and act as 

positive or negative allosteric modulators [9]. 

In heterologous expression systems, the 

presence of alpha, beta subunits are needed for 

functional channels while, gamma subunits are 

required to mimic the full repertoire of native 

receptor for responses to drugs. The 

knowledge of the complex pharmacology of 

GABAA receptors might eventually enable 

site-directed drug design to elaborate our 

understanding of GABA-related disorders and 

of the complex interaction of excitatory and 

inhibitory mechanisms in neuronal processing. 

To understand the role of GABAA receptors in 

mental disorder many methods including 

molecular and electrophysiological techniques 

have been used. In the present study we have 

shown the role of GABAARs in some mental 

disorders.  
 

Structure and molecular biology of GABA 

receptors 

     The ligand-gated ion channels (LGICs) 

super family share a common proposed 

structure. They have a long extracellular 

amino terminus (around 200 amino acid), 

thought to be responsible for ligand channel 

interactions and forms agonist binding site, 

and four transmembrane (TM) domains and a 

large intracellular domain between TM3 and 

TM4 [2, 10]. The TM3-TM4 loop is an 

important site for regulation by 

phosphorylation and for localization at 
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synapses [11]. It is thought that TM2 forms the 

lining segment of the ion channel. The 

extracellular amino terminus is believed to 

incorporate neurotransmitter and some 

modulator binding sites and it contains a 

conserved motif, the so-called Cys loop 

(cysteine loop). The Cys-loop is characterized 

by two cysteine residues spaced by thirteen 

otherwise largely divergent amino acid 

residues (Figure.1). This structure is common 

within acetylcholine (ACh), glycine and type 3 

serotonin (5-HT3) receptor as well.  
 

 
Figure 1. Ligand gated ion channels are composed of five 

peptide units. Each unit has an N-terminal domain, four 

transmembrane domains, a large extracellular loop 

between M3 and M4 and a C-terminus [116]. 

 

Channels in GABAA and glycine receptors are 

anion-selective, whereas in the ACh and 5-

HT3 receptors are cation-selective [12]. There 

is a significant sequence homology in each 

receptor gene family. In GABAA receptor 

subunits the region between TM3 and TM4 

shows a little or no sequence homology, 

suggesting that this domain can tolerate many 

changes without affecting any possible 

functional role [13, 14]. GABAA receptors are 

large proteins (450-627 amino acids in length) 

embedded in the cell membrane of neurons. 

The channel is formed in the centre of receptor 

that consists of five protein molecules, or 

subunits [15]. GABAA receptors are activated 

directly by GABA. In this phenomenon they 

mediate fast response to GABA and open 

channel to allow the inward passage of 

chloride and bicarbonate ions from outside the 

cell to inside it. 
 

Chromosomal localization of GABAA 

receptor genes 

     It has been found that each GABAA 

receptor subunit is encoded by homologous, 

distinct genes. Many of the subunit genes are 

organized in  and  gene 

clusters on different chromosomes [16, 17]. In 

humans, the  subunit genes are 

localized on chromosome 4p14-q12. The 1 

and 4 genes, which are separated by less than 

60-kb, are arranged in the head to head 

orientation [17]. The 1 transcription unit faces 

the tail of 2. The , and 1 subunit 

mRNA are predominately expressed in the 

undifferentiated neuroepithelium of rat embryo 

[18]. During postnatal development, down 

regulation of the , and 1 subunits 

occurs in some specific region whereas 

expression levels of most other subunits 

increase. Highly expression of the , and 

1 genes in the hippocampal formation of the 

adult rat [19], shows that cluster organization 

may be necessary to preserve region-specific 

gene transcription.  

     The most abundant GABAA receptor 

subunit genes encoding are found in a 2-

 cluster on chromosome 5q31.2-q35 

[17, 20-24]. The 2 and 6 genes are 

separated by less than 60-kb, with 

transcription units facing in opposite directions 

[17]. The colocalization of the , and 2 

subunits may be related to their coordinate 

gene regulation throughout the nervous 

system; however, direct observation of 

coordinate regulation has not been reported. 

The 6 gene that is head-to-head with 2 is 

expressed only in cerebellar granule cells [25], 

suggests that there is also independent 

regulation of transcription for individual 

members in this gene cluster. 

    The  GABAA receptor subunit 

genes are localized on chromosome 15q11–

q13 [17, 26-31]. Lastly, the putative  

gene cluster on chromosome Xq28 is 

analogous to the cluster on chromosome 15 

[16, 17, 32, 33]. The -subunit gene is 

analogous to , and  has the same position 

and transcriptional orientation as the -subunit 

gene in other clusters.  

     Gene expression can be controlled at 

multiple levels of transcription, alternative 

splicing, mRNA stability, translation, post-

translational modification, intracellular 

trafficking, and protein degradation. However, 

gene regulation is predominantly controlled at 

the level of transcription initiation [34, 35]. 

Any abnormal alteration during gene 

expression could result in changes in function 

and could lead to mental disorders.  

 

Distribution of GABAA receptor subunits in 

the CNS 

     A variety of studies using in situ 

hybridization [25, 36] and 

immunohistochemistry [37-41]  have indicated 

the distribution of GABAA receptor subunits in 

the brain. The GABAA receptor α1, β1, β2, β3,  
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and γ2 are found throughout the brain with 

different distribution levels. The α2, α3, α4, 

α5, α6, γ1, and δ subunits are found in certain 

regions of the brain (Table 1). Mehta et al 

(1999) reported the percentage of the binding 

sites immunoprecipitated by antisera to 

various subunits of GABAA receptors in the 

adult brain regions. These percentages are as 

follows: α1 = 70-90%, α2 = 4-28%, α3 = 12-

24%, α4 = 0-15%, α5 = 4-14%, α6 = 30-39% 

(cerebellum), β1 = 2-32%, β2 = 55-96%, β3 = 

19-52%, γ1 = 0-19%, γ2 = 50-94%, γ2S = 31-

52%, γ2L = 37-65%, γ3 = 0-18%, and δ = 0- 

 

23% [43]. These results are in a good 

agreement with in situ hybridization data 

which showed in the brain that γ1 and γ3 

mRNA are expressed in much smaller amounts 

relative to γ2 mRNA [25, 36, 44]. Although 

these data do not show the regional 

distribution of GABAA receptor subunits, they 

show which subunits are abundant in the brain. 

Distribution of GABAA receptor subunits in 

the brain are summarised in table 1. Gaba 

receptor also could be seen in other tissue far 

from CNS such as sperm [45]. 

 

Table 1. Regional distributions of GABAA receptor subutints in the brain (Sieghart, 2002) 
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Pharmacology of GABAA receptors 

      More than one hundred agents act on 

GABAA receptors. These agents act in 

different binding sites which some are not 

known yet [46]. Drugs and endogenous 

ligands act as positive or negative 

allosteric modulators on GABAA 

receptors. Compounds bind on either 

extracellular domain or channel domain of 

the receptor and act as positive or negative 

modulators [2]. Benzodiazepines are 

positive modulators acting on the 

extracellular domain, whereas -carbolines 

act mainly as negative modulators. The 

presence or absence of the 2 subunit in 

the structure of the GABAA receptor can 

influence the action of positive allosteric 

modulators [47]. The effect of compounds 

bind on channel the domain can be 

positive or negative. Barbiturates and 

steroid hormones act as positive allosteric 

modulators, whereas pregnenolone and 

picrotoxin act as negative modulators. 

However their effects do not depends on 

the structure of the receptors [47-49]. 

Benzodiazepines have been widely 

prescribed since chlordiazepoxide was first 

introduced in 1960; and because of their 

safety and efficacy benzodiazepines 

became the most prescribed drugs in the 

1960s and 1970s. However, because of 

benzodiazepines side effects and drug 

abuse the use of benzodiazepines have 

fallen in recent years, but they are still 

highly prescribed drugs [50]. 

Benzodiazepines the one of these agents 

use to treat anxiety have side effects such 

as sedation, ataxia, amnesia, tolerance, and 

physical dependence. Because the 

physiological and pharmacological role of 

various native GABAA receptor assemblies 

is not yet known, it is not easy to 

synthesize compounds selective for 

particular receptor assembly to get a 

desired therapeutic effect without any 

serious side effect. All GABA receptors 

are sensitive to GABA. The binding of 

GABA to specific sites on the receptor 

results in the opening of an intrinsic ion 

channel and the flux of chloride into the 

cell, which leads to a hyperpolarization of 

the cell membrane and an increase in the 

inhibitory tone. The GABAA receptors are 

targets for many important drugs such as 

benzodiazepines, general anaesthetics, 

steroids, convulsants and barbiturates [51]. 

Benzodiazepines mediate their sedative, 

amnesic and anxiolytic actions via binding 

to GABAA receptors. The sensitivity of 

GABA receptors to benzodiazepines 

depends on the GABA receptor subunits 

composition and is different from one 

region of the brain to another [52]. It is 

suggested that  subunit has a role as 

important as subunit in determining 

benzodiazepines sensitivity [53].  Different 

variants of the  subunit can influence both 

affinity and efficacy of various 

benzodiazepines site ligands and also the 

type of  subunit can influence the affinity 

and efficacy of a number of 

benzodiazepines such as zolpidem. 

Receptor combinations which include the 

1 receptor subunits display, 

benzodiazepines type one pharmacology 

and bind diazepam, zolpidem and other 

benzodiazepines with high affinity, while 

those receptors including the 2, 3, and 

5 subunits display benzodiazepines type 

two pharmacology and confer low affinity 

for this ligand, whereas the 4 and 6 

subunits confer benzodiazepines 

insensitivity [54]. The crucial amino acids 

responsible for potent action of 

benzodiazepines are located within the N-

terminal domains of  and , within the 

putative second and third transmembrane 

domains [55]. In one study various 

compounds of benzodiazepines were 

examined on three different human 

GABAA receptor combinations (21, 

212S, 211). The data showed 

significant differences among these 

GABAA combinations. The 1 subunit in 

comparison to 2 subunit can confer a 

different pharmacological profile with 

regard to benzodiazepine site ligands [53]. 

The patch-clamp technique will be used to 

facilitate the further characterisation of 

these drugs and their GABAA receptors. In 

this thesis the effects of some of the drugs 

on GABAA channels was examined. 

Understanding the basic mechanism of 

operation of the GABAA receptors may 

possibly result in more specific drugs and 
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better treatments of some of the mental 

disorders. One way make pharmacological 

screening of GABA subunits easy is using 

an anion-sensitive yellow fluorescent 

protein-based assay [56]   

     The action of nM and M concentration 

of diazepam on 2 recombinant 

expressed into Xenopus oocytes is 

different at low concentration of GABA 

[55]. At M concentration diazepam action 

is independent of the 2 subunit. Using 

mutation of rho subunit of corresponding 

TM2 and TM3 residues and application of 

diazepam support this results. Together 

these data suggest that diazepam, at low 

concentration of GABA creates two 

distinct components of potentiation. 

Gamma subunits are relatively insensitive 

to Zn
2+

 compared to subunit receptors 

[57]. 
 

GABAA receptors and mental disorder 

     Studies on GABAA receptors show that 

these receptors are involved in the pathology 

of several neurological and psychiatric 

diseases, such as epilepsy, anxiety, alcoholism 

[58], Angelman’s syndrome [59], autism [60], 

depression [61], premenstrual syndrome [62-

64], sleep disorders [65], and Alzheimer’s 

disease [64]. Some psychiatric disease such as, 

spasticity, and stiff-person syndrome, are 

related to lack of GABAergic function in the 

brain.  

     GABA transmission plays a key role in 

controlling seizure activity. The exact nature 

of its effect depends on the particular position 

in the brain and the pathway involved. Animal 

studies have helped to describe specific brain 

regions such as the substantia nigra that are 

vital in controlling seizure activity. 

Antiepileptic drugs such as vigabatrin, a drug 

developed to treat resistant epilepsy, can 

increase GABA transmission in these regions 

and may thereby afford seizure protection 

[66].  

     The role of gamma-aminobutyric acid 

(GABA) in depression and anxiety has been 

described. New data from both animal and 

human experimentation have helped define the 

key role for this transmitter in both these 

mental pathologies [67]. Dysfunction of the 

gamma-aminobutyric (GABA) in central 

nervous system has long been associated with 

anxiety disorders [68-70]. In both human and 

animal studies, positive modulators of GABA 

receptors generally possess anxiolytic activity, 

whereas negative modulators create 

anxiogenic-like effects [68]. Various GABA 

analogs and agents affecting transmitter 

metabolism to enhance GABAergic tone have 

also been reported to exert anxiolytic effects 

[71, 72]. Chronic alcoholism leads to localized 

brain damage, which is eminent in superior 

frontal cortex but mild in motor cortex. The 

probability of developing alcohol dependence 

is associated with genetic markers. GABAA 

receptor expression differs between alcoholics 

and controls [73, 74].  

Many researchers guess that GABAergic 

dysfunction plays an important role in the 

mechanism of neural impairment in Angelman 

syndrome [75, 76]. 

     First round reports have showed altered 

expression of GABA receptors in the brains of 

subjects with autism suggesting 

GABA/glutamate system dysregulation. 

Significant decreases in GABRA1, GABRA2, 

GABRA3, and GABRB3 in parietal cortex 

have been reported. These results reveal that 

GABAA receptors are reduced in the brain 

regions that have previously been associated in 

the pathogenesis of autism, suggesting 

widespread GABAergic dysfunction in the 

brains of subjects with autism [77, 78]. 

     Adult neurogenesis adjusts plasticity and 

function in the hippocampus, which is critical 

for memory and vulnerable to Alzheimer's 

disease (AD). Promoting neurogenesis may 

improve hippocampal function in AD brains. 

However, how amyloid β (Aβ), the key AD 

pathogen, affects the development and 

function of adult-born neurons remains 

unknown. Adult-born granule cells  (GCs) in 

human amyloid precursor protein (hAPP) 

transgenic mice, an AD model, showed greater 

dendritic length, spine density, and functional 

responses than did controls early in 

development, but were impaired 

morphologically and functionally during later 

maturation. Early inhibition of GABAA 

receptors to suppress GABAergic signaling or 

late inhibition of calcineurin  to enhance 

glutamatergic signaling normalized the 

development of adult-born GCs in hAPP mice 

with high Aβ levels. Aβ-induced increases in 

GABAergic neurotransmission or an 

imbalance between GABAergic and 

glutamatergic neurotransmission may 

contribute to impaired neurogenesis in AD 

[79].  

     In comparison to glutamatergic and 

cholinergic systems, the GABAergic system is 

relatively spared in AD, but the precise 

mechanisms underlying differential 
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vulnerability are not well understood. Using 

several methods, investigations demonstrate 

that despite resistance of the GABAergic 

system to neurodegeneration, particular 

subunits of the GABAA receptor are altered 

with age and AD, which can induce 

compensatory increases in GABAA receptor 

subunits within surrounding cells. Although 

alteration in GABAA may be diffident and 

perhaps low, this may be enough for alteration 

in the pharmacokinetic and physiological 

properties of the receptor. Therefore, it is 

critical to understand the subunit composition 

of individual GABAA receptors in the diseased 

brain when developing therapeutics that act at 

these receptors [80].  

 

GABAA receptors alteration in CNS 

     Genetics variations in gene expression may 

be associated with mental disorders. An 

altered expression of the GABAA receptor has 

neurophysiologic and functional consequences 

that might relate to the behavioral and 

epileptic phenotype associated with fragile X 

syndrome, such as anxiety, depression, 

epilepsy, insomnia, and learning and memory 

[81, 82]. Alteration in GABAergic inhibitory 

action such as alterations in the number of 

GABAA receptors [4], alterations in GABAA 

receptor subunit composition [40, 83, 84], 

increased sensitivity to Zn2+ inhibition of 

GABAA receptors in the dentate granule cells 

[84-86], decreases in GABA transporter 

function [87] disconnection of inhibitory 

interneurons from excitatory inputs [88] and 

use-dependent reduction of excitatory drive to 

inhibitory interneurons [89] is important in the 

generation of epilepsy. Alterations in GABAA 

receptor subunit gene expression also may be 

important in mediating Alzheimer’s disease 

[90, 91], schizophrenia [92-95], and ischemia 

[96, 97]. In severe cases of Alzheimer’s 

disease, levels of 1 subunit protein are 

significantly reduced compared with mild 

cases within the hippocampal subregions CA1, 

CA2, and prosubiculum, but not in the dentate 

gyrus, subiculum, and presubiculum [91]. 

Furthermore, level of 3, but not 2, mRNA is 

reduced in the pathologically severe group in 

all hippocampal subregions except CA4 [90]. 

GABAA receptor subunit mRNA are 

differentially regulated in the prefrontal cortex 

of schizophrenics. While modest reductions in 

, and 2 subunit mRNA 

have been detected by in situ hybridisation 

histochemistry [93], reduced levels of 2S 

transcripts have been observed using 

semiquantative RT-PCR [94]. In human 

temporal lobe epilepsy (TLE), alterations in 

GABA receptor binding have been 

documented [98]. In the CA2 area of TLE 

patients there is a uniform increase in 1, 2, 

2/3, and 2 subunits in the dentate granule 

cell layer, while levels of 2 alone increase. 

Moreover, extensive cell loss in the CA1 and 

CA3 regions is accompanied by a significant 

decrease in the  subunit. Mutations in the 

GABAA receptor 2 subunit [99, 100] and 1 

subunit [101, 102] have been described in 

patients with epilepsy. 

Innate genetic errors caused by dysfunction of 

the GABAergic system have features common 

in many mental disorders. Patients with 1p36 

deletions, missing a series of genes including 

the delta subunit of the GABAA receptor, show 

neurological and neuropsychiatric anomalies 

[103]. The genes encoding the alpha 5, beta 3 

and gamma 3 subunits of the GABAA receptor 

on chromosome 15 are commonly deleted in 

patients with Prader-Willi or Angelman 

syndrome [104] that this altered 

neurobehavioral function of Prader-Willi 

patients could arise directly from an altered 

GABAA receptor composition and expression. 

In addition, beta 3 mutant mice display a 

phenotype similar to some aspects of 

Angelman syndrome, including epilepsy, 

hyperactivity, learning and memory deficits, 

and poor motor skills [105]. It is suggested 

that the associated seizures in some 

experimental mutant mice could be elucidated 

by an imbalanced neurotransmitter 

concentration that led to a pathological 

adjustment of the GABA inhibitory system 

[106, 107]. Significant decrease in mRNA 

expression of GAD67, delta alpha 1, alpha 3 

and alpha 4, beta 1 and beta 2, and gamma 1 

and gamma 2 subunits of the GABAA receptor, 

has been demonstrated in the fragile X mouse 

[82, 108, 109]. 

 

Agents effect on GABAA receptors in 

mental disorder 

    Many drugs that work on the GABAA 

receptor are commercially available. GABAA 

receptors are targets of both various classes of 

clinically relevant drugs, including 

benzodiazepines, barbiturates, and general 

anaesthetics, in addition to endogenous 

components, such as neuroactive steroids, all 

of which allosterically modulate receptor 

function [5, 110].  

Benzodiazepines are widely used as anxiolytic 

agents in many countries even though 

antidepressants are now suggested as the first 
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choice of treatment for anxiety [111], largely 

due to their safety profile. Benzodiazepines are 

very effective in short-term use. A point 

mutation in the GABAA receptor 2 subunit 

in transgenic mouse lines selectively disrupted 

the anxiolytic effects of benzodiazepines, but 

not other pharmacological effects of 

benzodiazepines [112]. This demonstrates a 

key role of the GABAA receptor 2 subunit in 

anxiolytic effects of benzodiazepines.  

     Some neuropsychiatric disorders, such as 

anxiety, epilepsy, sleep disorders and 

convulsive disorders, have been effectively 

treated with therapeutic agents that enhance 

the action of GABA at the GABAA receptor in 

nervous tissue [113]. 

     Expression of specific subtypes of the 

GABAA receptor decrease in fragile X 

syndrome; it is indicate that specific enhancers 

of this receptor might be suitable drugs to treat 

the behavioral aspects of the disorder. These 

compounds with partial agonist properties 

were already reported to have improved 

profiles in whole animal behavioral models 

[114]. 

     The GABA transporter 1 is another novel 

candidate as a promising target for treatment 

of anxiety disorders with panic symptoms 

[115]. 

 

CONCLUSION 
     GABA system as a whole and especially 

GABAA receptors have important roles in CNS 

and have also been strongly linked to several 

mental disorders such as epilepsy, anxiety, 

depression and alcoholism with different 

mechanisms. Previous research found 

evidences for association of various GABA 

receptor genes and a range of mental disorder-

related phenotypes. Alteration in GABAergic 

inhibitory action such as alterations in the 

number of GABAA receptors, alterations in 

GABAA receptor subunit composition and 

gene expression of the GABAA receptor has 

neurophysiologic and functional consequences 

that might relate to mental disorders. 

Therefore, the better understanding of 

relationship of GABAA receptors and mental 

disorders potentially could help to find novel 

drugs to overcome aforementioned disorders 

and avoid their side effects. 
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