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ABSTRACT

Human body consists of some tissues which bone is one of the important living and growing tissues. In this
research, energy absorption buildup factor (EABF) values of 27 types of bone have been computed for
photon energy 0.03 to 1.5 MeV up to 40 mean free path (40mfp) penetration depths. The Inner bone tissue,
Spongiosa and Male sternum had the largest values of EABF in low photon energies, and great differences
below 150 keV photon energy were noted relative to the other bones. This study would be of utmost
importance for estimation of the effective dose to the human bones, radiation therapy and various medical

applications.
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INTRODUCTION

The effect of radiation on human organs
depends upon absorbed dose, energy, radiation
types and organs irradiated. Gamma and Xx-rays
have various interactions with the materials
(Photo electric absorption, Compton scattering,
Pair production and Coherent) [1-13]. These
photons colliding the human organs not only
loose energy and are absorbed, but also generate
new photons by multiple scattering [2,3,12].
Buildup factor is an enhancing factor used to get
the corrected response to un-collided photons by
including the contribution of scattered photons.
This factor depends upon the energy of the
photons, atomic number of the target and the
penetration depth, as well as the radiation source
and the medium geometry. The buildup factor in
which the quantity of interest is the absorbed
energy in the medium is defined as the energy
absorption buildup factor. In 1993, Harima
prepared a review on calculations and
applications of buildup factors [10]. In medical
applications, photons (Gamma- and X-rays) are
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mostly used for radiotherapy and diagnostic of a
lot of diseases [12]. As a result, different body
tissues are being exposed to photons. Therefore,
having the data about how these radiations
interact with the body is an essential piece of
information. When gamma or x-rays enter the
body, they reduce their energy inside the body,
leading to secondary photon which can be
estimated by buildup factor. Owing to the buildup
of degraded gamma rays by scattering within the
tissue, the maximum dose to the tissue is located
at the inside when tissues are exposed to
radiations. Considering the importance of buildup
of scattered gamma rays, an attempt has been
made to calculate the EABF for some bones.
Lately, buildup factors for some polymers and
tissue substitute materials were computed by
Kurudirek and coworkers [12]. There is a need
for gamma-ray buildup factors of low-Z complex
materials, such as various bones, in radiotherapy
and diagnostics for dose estimations. In general,
the results of the study can help in estimating safe
dose levels for radiotherapy and diagnostics. In
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the present study, we have calculated energy
absorption buildup factors (EABF) for various
bones, such as inner bone tissue, Spongiosa and
Male sternum, etc. The calculations have been
performed for energies of 30keV-1.5 MeV up to
penetration depths of 40 mean free paths. The
produced buildup factor data is studied as a
function of incident photon energy, etc. The data
will be helpful for many applications especially
in radiotherapy and diagnostic, for the
preparation of phantoms using bone-equivalent
materials.
MATERIALS AND METHODS

Elemental compositions of different bones in
human body are seen in Table 1 [14]. The Z,, of
the bone tissues for interactions varies with the
energy of photons. The buildup of photons in the
materials is more due to Compton scattering, so
Zoq is derived from the Compton scattering
process.

The buildup factors of bones are estimated by
using GP fitting coefficients in the gamma
energies up to 40 mfp using the equations [1-3, 9-
11] given below,

(b=1)(K* -1) .
B(E,,\') = I +T fOl K = 1
1+(b-1x for K =1 (1
tanh(x/ X, =2)-tanh(=2) ;
TGl il /R Y
| - tanh(-2) @

where E is the energy of source, x is the
penetration depth in units of mfp (mean free
path), and a, b, ¢, d and Xy are GP fitting
parameters. The value of the parameter b
represents the buildup factor at 1 mfp. The
variation of the parameter K with penetration

depth corresponds to the photon dose
multiplication.
Table 1. Elemental composition of some bones [14].
Sample Name Density | H C N (0] Na Mg P S Cl K Ca Fe
. 8.6 | 13.01 | 3.60 | 66.47 | 0.08 0.46 | 0.00 | 0.23 0.00
Inner bone tissue 1.12 80 4 4 3 0 0.06 | 2.433 1 0 0 4.965 0
. 85 | 29.09 | 2.38 | 48.43 | 0.07 | 3.23 0.45 | 0.00 | 0.22 0.00
Spongiosa 1.18 56 0 0 4 9 5 0.139 6 0 8 7.406 0
7.7 | 3168 | 3.61 | 44.14 | 0.05 | 0.08 0.12 | 0.00 | 0.11 0.05
Male stemum 1.25 99 6 5 8 0 0 3.964 0 0 0 8.378 0
7.4 | 30.24 | 3.64 | 44.15 | 0.05 | 0.09 0.13 | 0.00 | 0.10 0.04
Sacrum Male 1.29 03 0 6 6 0 0 4.525 0 0 0 9.620 0
D6L3 male with 7.3 | 26.67 | 3.51 | 47.75 | 0.04 | 0.09 0.24 | 0.00 | 0.08 0.04
cartilage 1.30 08 7 9 9 0 0 4.541 1 0 0 9.704 0
7.0 | 25.96 | 3.54 | 47.66 | 0.04 | 0.10 0.24 | 0.00 | 0.08 | 10.39 | 0.03
Famur whole column 1.32 89 0 0 9 0 0 4.853 1 0 0 8 0
Male vertebral 133 7.0 | 25.79 | 3.59 | 47.18 | 0.10 | 0.10 5008 0.30 | 0.10 | 0.10 | 10.49 | 0.03
column ' 98 2 9 6 0 0 ' 0 0 0 7 0
D6L3 male no 133 6.9 | 28.70 | 3.67 | 44.10 | 0.05 | 0.10 5100 0.15 | 0.10 | 0.09 | 10.89 | 0.04
cartilage ' 87 6 3 6 0 0 ' 0 0 0 9 0
Humerus spherical 133 7.0 | 3781 | 259 | 3412 | 0.10 | 0.10 5587 0.20 | 0.10 | 0.09 | 12.17 | 0.04
head ) 84 3 4 2 0 0 ) 0 0 0 2 0
. 6.9 | 24.87 | 2.89 | 47.21 | 0.02 | 0.07 0.18 | 0.10 | 0.09 | 12.11 | 0.04
Famur spherical head 1.34 " 3 5 3 0 0 5.455 9 0 0 7 0
. . 6.6 | 2445 | 3.57 | 4751 | 0.05 | 0.05 0.26 | 0.10 | 0.07 | 11.76 | 0.03
C4 male with cartilage 1.37 45 6 8 9 0 0 5.473 1 0 0 7 0
Famur conical 137 6.7 | 2431 | 2.95 | 47.03 | 0.02 | 0.08 5737 0.20 | 0.10 | 0.07 | 12.73 | 0.03
traochanter ' 35 4 3 2 0 0 ' 0 0 0 1 0
6.5 | 27.08 | 3.71 | 44.09 | 0.05 | 0.12 0.17 | 0.10 | 0.08 | 12.27 | 0.04
Secrum female 1.38 47 6 3 5 0 0 5.729 0 0 0 5 0
Humerus whole 1.39 6.5 | 23.74 | 3.02 | 46.83 | 0.02 | 0.08 6.026 0.20 | 0.10 | 0.08 | 13.32 | 0.04
specimen ' 14 3 3 8 0 0 ' 9 0 0 8 0
Male ribs 2 and 6 141 6.3 | 26.33 | 3.72 | 44.10 | 0.05 | 0.12 | 6.020 | 0.18 | 0.10 | 0.08 | 12.91 | 0.03
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39 5 4 5 0 0 0 0 0 8 0
. 6.3 | 26.28 | 3.72 | 44.09 | 0.05 | 0.12 0.18 | 0.10 | 0.07 | 12.96 | 0.03
Male pelvic bones 141 30 8 4 9 0 0 6.040 0 0 0 9 0
. 6.2 | 26.10 | 3.73 | 44.09 | 0.05 | 0.12 0.18 | 0.10 | 0.07 | 13.11 | 0.03
C4 male no cartilage 1.42 80 8 4 9 0 0 6.110 0 0 0 9 0
Famur whole 143 6.1 | 22.84 | 3.12 | 46.53 | 0.03 | 0.10 6.476 0.22 | 0.10 | 0.07 | 14.29 | 0.03
specimen ' 76 0 3 8 0 0 ' 0 0 0 9 0
. 5.9 | 25.01 | 3.75 | 44.09 | 0.05 | 0.13 0.20 | 0.10 | 0.07 | 14.04 | 0.03
Female pelvic bones 1.45 80 0 4 9 0 0 6.530 0 0 0 8 0
6.0 | 31.27 | 290 | 37.31 | 0.04 | 0.14 0.23 | 0.10 | 0.07 | 14.99 | 0.03
Humerus total bone 1.46 04 9 5 2 0 0 6.894 0 0 0 9 0
. 59 | 31.23 | 2.90 | 37.33 | 0.04 | 0.14 0.23 | 0.10 | 0.07 | 15.02 | 0.03
Male clavicle scapula 1.46 94 5 5 6 0 0 6.905 0 0 0 1 0
Humerus cylindrical 1.49 57| 2162 | 3.26 | 46.12 | 0.03 | 0.12 7086 0.23 | 0.10 | 0.07 | 1559 | 0.03
shaft ) 19 7 3 8 0 0 ' 0 0 0 9 0
. 55 | 2349 | 3.78 | 44.07 | 0.05 | 0.15 0.21 | 0.10 | 0.08 | 15.32 | 0.04
Male ribs 10 151 69 3 5 5 0 0 7.126 0 0 0 9 0
. 49 | 2119 | 3.84 | 44.08 | 0.06 | 0.16 0.24 | 0.10 | 0.04 | 17.31 | 0.02
Cranium 1.60 34 5 5 7 0 0 8.000 0 0 0 9 0
. 45| 19.89 | 3.86 | 44.09 | 0.06 | 0.17 0.26 | 0.10 | 0.03 | 18.43 | 0.01
Mandible 1.66 86 5 7 0 0 0 8.502 0 0 0 3 0
Femur culindrical 175 41 | 2037 | 3.79 | 4144 | 0.10 | 0.20 9.287 0.30 | 0.10 | 0.03 | 20.17 | 0.01
shaft ' 94 2 5 2 0 0 ' 0 0 0 2 0
. 33| 1548 | 3.96 | 4406 | 0.06 | 0.21 | 10.19 | 0.31 | 0.10 | 0.03 | 22.18 | 0.01
Cortical bone 1.90 87 8 7 5 0 0 5 0 0 0 5 0

RESULTS AND DISCUSSION

Figures (2-6) show the results of EABF for
bones at selected energies (Figure 1(a -g)) as well
as at different penetration depths. Also the
variation of EABF with the some bones at
different energies and penetration depth (Figure
7(a-e)) has been shown in graphical form. As
shown in figure 1(a-g), it has been indicated that
EABF values of bones start increasing with
increase in gamma energy up to a maximum
value at around 100-150keV. Due to the

photoelectric absorption, more increase in gamma
energy decreases the value of EABF. With
increase in gamma energy the Compton scattering
process is dominant which results in more
multiple scattering and leads to increase in EABF
values. Maximum values of EABF for all bones
have been observed at 150keV figurel (a-g). In
high energies (>1MeV), the variation of EABF
with incident gamma energy seems to be
independent of the chemical composition of given
samples at this energy region.
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Figure 1. Variation of EABF as a function of incident photon energy (keV) for Inner bone tissue, spongiosa, mal sternum,

sacrum male, D6L.3 male with cartilage, Humerus whole specimen And cortical bone.
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The curves at different energies in figures (2-6)
show that there is increase in EABF with increase
in penetration depth for all samples. It is due to
the fact that the increase in penetration depth
increases the interaction of gamma-radiation
photons with matter resulting in generation of
large number of low energy photons due to
occurrence of Compton scattering process. It has
been observed that at lower than 100keVenergies
the values of EABF for the bones is low and the
variation is between 2-9 for 40 mfp. By
increasing the energy to 100-150keV, EABF
increases to higher than 6000 for 40 mfp. The
variation in this range of energies will be more
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severe. The variation of EABF in low penetration
depth is not affected by the type of bone samples.
In the energy range of 1-1.5MeV, EABF has the
almost constant values for lower mfp (lower
10mfp), and increases to higher than 200 for 40
mfp. The EABF in high energies is not affected
by the chemical composition; so, in the medium
gamma energies, EABF has the maximum values
for all bones, and in low energies has the
minimum values. It is shown that for energies
higher than1MeV, there is a drop in the value of
EABF which ultimately indicates the dominance
of pair production process in this range of energy.
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Figure 2. Variation of EABF with penetration depth of all bones at energy 30keV
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The results show that with the increase in energy,

MeV.
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Figure 7. (a-e).Variation of EABF with the kinds of bones at different energies and mfps.

Generally, the EABF is small for all depths of
penetration (mfp) at low energies. Photoelectric is
the conquering gamma interaction process at low
energies, leading to an exclusion of the incident
of low-energy gamma rays and thus not allowing
any tangible buildup of gamma rays. The EABF
got large values at range of energies 100-150keV;
at this range of energy the interaction cross
sections for Compton scattering is high and the
EABF reaches large values for a given
penetration depth. This is owed to the multiple
scattering of gamma rays in Compton scattering.
The multiple scattered gamma rays exist for a
longer time in the material, which results in a
higher value of buildup factor.

CONCLUSION

In this research, the energy absorption buildup
factor (EABF) values of different bones in energy
range 30keV to 15 MeV up to 40 mfp
penetration depths were calculated. The variation
of EABF values of the bones proved to be
dependent upon the photon energy, the
penetration depth and the chemical compositions.
According to the results, increase in gamma
energy decreases the value of EABF,; moreover,
in high mfp’s, EABF has an enhancing state for
all bone tissues increase (EABF variations are
severe in above 8mfp). EABF variations for bone
tissues are almost constant in high gamma
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energies. The bone equivalent and dosimetric
properties of the present selected bone tissues are
useful in clinical applications such as radiological
examinations and therapeutic under radiation
conditions where the effective energy of the
photon attenuation field is difficult to assess.
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