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Background: Auditory sensory epithelium of mammals has two types of 

mechanosensory cells including the inner hair cells (IHC) and outer hair cells (OHC). 

IHC in the mammalian inner ear is an important component for the sound perception. 

Information about the frequency, intensity, and timing of acoustic signals is 

transmitted rapidly and precisely via ribbon synapses of the IHCs to the type 1 spiral 

ganglion neurons (SGNs). Even in the absence of stimulation, these synapses drive 

spontaneous spiking into the afferent neuron. Evidence has shown that cochlear 

neuropathy leading to hearing loss may be a result of the damage to ribbon synapses 
 

Aim: Here, we review how these synapses promote the rapid neurotransmitter release 

and sustained signal transmission. We also discuss the mechanisms involved in 

ribbon synapse reformation for hearing restoration. 
 

Conclusion: Although cochlear ribbon synapses fail to regenerate spontaneously 

when injured, recent studies have provided evidence for cochlear synaptogenesis that 

will be relevant to regenerative methods for cochlear neural loss. A better 

understanding of mechanisms underlying synaptic reformation would be helpful in 

achieving reversal of sensorineural hearing loss. 
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Introduction 

Mammalian cochlear hair cells (HCs) are 

located in the basal membrane of the auditory 

sensory epithelium or organ of Corti (1). The 

main function of HCs is conversion of vibration 

produced by sound waves into electrochemical 

impulses which reach spiral ganglion neurons 

(SGNs). Information about the acoustic 

environment is conveyed from inner hair cells 

(IHCs) into to the peripheral processes of SGNs 

through a specialized connection known as the 

ribbon synapse (2), while, outer hair cells 

(OHCs) intensify the mechanical amplification 

of sound-induced vibrations (3). Indeed, the 

sense of hearing is dependent on the function of 

the ribbon synapses between IHCs and SGN. 

IHCs within the cochlea are innervated by type 

I SGNs fibers (4). The cochlear ganglion 

contains bipolar neurons with peripheral 

processes that transmit complex acoustic 

information from HCs to target neurons in the 

central nervous system (CNS) through the 

eighth cranial nerve. The synapse between the 

IHCs and the type I SGN are usually of ribbon 

synapse type (5). The presynaptic ribbons in the 

basolateral membrane of the inner ear are 
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localized at the opposite side of the 

postsynaptic glutamate receptors on the 

dendrite.  

The synaptic transmission by the sensory 

receptors of the auditory systems is determined 

through tonic and graded neurotransmitter 

release which requires sustained and rapid rates 

of exocytosis (6). The importance of this type 

of synapse lies in the fast transduction of the 

neurotransmitter to the active zone. They start 

and synchronize firing in response to a stimulus 

to the active zones at the base of the hair cell. In 

response to acoustic stimulus, presynaptic 

ribbons vesicles are released quickly and 

synchronously with a high temporal resolution 

(7-9).  

Excitatory neurotransmission is created by 

glutamate receptors such as α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) in the postsynaptic dendrite of afferent 

fibers (10). Several factors and signaling 

pathways such as brain-derived neurotrophic 

factor (BDNF) and neurotrophin-3 play roles in 

the establishment of IHC ribbon synapses 

during cochlear development (11, 12). Studies 

have revealed that cochlear neuropathy leading 

to hearing loss may be a result of the injury to 

ribbon synapses. This review will provide an 

overview of the mechanism involved in ribbon 

synapse reformation for hearing restoration. 

Hair cell ribbon synapse formation  

Synaptic 'ribbons' differ significantly from 

conventional CNS synapses in terms of their 

structure, physiology, and molecular 

composition. Hair cell ribbons have different 

morphologies such as planar, spherical, or 

oblong in shape and variable in size with 20–

400 vesicles (13). In mammalian cochlea, 

ribbon synaptic vesicles have  about 100 to 200 

voltage-gated calcium channels (14, 15). These 

vesicles may contain the neurotransmitter 

glutamate. Ribbon electron dense synaptic 

bodies are attached to the membrane of a 

postsynaptic neuron. It is still not clear how the 

cochlear ribbon synapse formation occurs. 

SGNs enable production of action potential at 

E14(16). Also, changes in the membrane 

capacitance induced by evoked exocytosis can 

be detected in IHCs at E16.5 (17). In rat pups, 

spontaneous spiking activity in immature IHCs 

can initiate action potentials in apical SGNs 

(18). Another study showed that afferent 

synaptogenesis in the cochlea occurs 

predominantly during the postnatal period (19). 

Studies have shown that presynaptic 

development appears to initiate autonomously 

in the hair cells organ of Corti in the developing 

mouse and culture.  This development is 

associated with the ribbon synapse formation in 

the absence of SGN terminals (20). Following 

the growth of SGN neurites, the pre-formed 

ribbons are organized into the basolateral 

membrane of IHC (21). The basolateral 

membrane of each hair cell contains multiple 

presynaptic active zones, where the chemical 

neurotransmitter is released (22). 

Hair cells ribbon synapse degeneration  

Two major types of sensorineural hearing loss 

are noise-induced and age-related hearing loss 

which are associated with genetic disorders, 

chronic ear infections, and chronic diseases (23, 

24). Although damage to hair cells and SGNs 

are the main cause of hearing impairment (25, 

26), recent evidence suggests that ribbon 

synapse degeneration might be an underlying 

cause implicated in hearing disorders (27-29). 

Noise exposure can induce several pathological 

processes such as metabolic fatigue and 

exhaustion of the hair cells and cochlear tissues 

(30), blood flow disturbance in the cochlea 

(31), reactive oxygen species 

production in cochlear tissues (32) and 

structural abnormalities in the organ of Corti 

(33). SGN terminals at IHC ribbon synapses 

swell in response to acute noise overexposure 

(34), due to noise-induced glutamate 

excitotoxicity (35). However, OHC ribbon 

synapses, which release glutamate at a far lower 

average rate (36), are not injured by acute 

acoustic overexposure (37).  
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It has been documented that age-related hearing 

loss is associated with progressive degeneration 

of cochlear hair cells and SGN (38,39). 

However, other studies in aged human and 

rodent cochleae have revealed that primary 

ribbon synapses synaptic degeneration is 

associated with minimal or no loss of hair cells 

and SGN (40-42)  . In addition, the decline in the 

amplitudes of auditory responses is a function 

of the alterations in ribbon synapses density 

(42). Similar to the noise-induced hearing loss, 

enlargement of afferent terminals is also 

detected in the cochlea of aged mouse (43). 

Age- and noise- related ribbon synapse loss is 

followed by delayed neuronal degeneration of 

SGN (44, 42). 

Reformation of ribbon synapse in 

regenerated hair cells 

Several studies have reported that cochlear 

ribbon synapses have very limited intrinsic 

capacity for regeneration (11, 45-49). 

Incomplete recovery of ribbon synapses in the 

cochlea after injury or over time with the aging 

could result in hearing difficulty in noisy places 

and a late onset of hearing loss. Thus, ribbon 

synapse reformation has a key role for the 

hearing restoration in the noise-induced and 

age-dependent hearing loss. Researchers have 

been attempting to restore auditory function 

through regeneration of both pre-synaptic 

ribbons and postsynaptic densities. New 

neurons ideally require to extend the axon to 

contact with hair cells in the organ of Corti and 

transmit sensory information towards the 

neurons in the cochlear nucleus (50). Indeed, 

the way regenerated SGNs can innervate hair 

cells spontaneously is under investigation (45, 

51).  

A previous study showed that HCs 

spontaneously regenerate from the supporting 

cells following cochlear damage in neonatal 

mice, but these HCs were negative for vesicular 

glutamate transporter VGlut3 (synaptic 

transmission) marker (52). In addition, studies 

have shown that Neutrophin family including 

BDNF, Neurotrophin-3 (NT-3), and (NT-4/5) 

have essential roles for regeneration of 

functional synaptic connections between 

neurons (53) (54, 55). BDNF and NT-3 with 

their receptors are critical for initial 

establishment of neuronal projections to 

sensory epithelia cochlea (56). Other studies 

have revealed that glutamate have important 

implications in the regulation of synaptic 

activity. Glutamate is another important 

synaptotrophic factor. In a deafferented ear, the 

average number of new synaptic contacts at the 

dendrite of SGN diminished remarkably in 

mice with a genetic deletion of Vglut3 

suggesting that glutamate transmitter release is 

important for the synaptic contact regeneration 

(12). A study has shown thee expression of 

synaptic markers including synapsin 1 and 

synaptophysin at the contact site between 

auditory afferent dendrites of type I and hair 

cells in early postnatal period in vitro (49, 57). 

Therefore, the expression of synapsin1 can be 

regarded as a marker of stem cell-derived 

auditory neurons capacity for regeneration or 

formation of functional synapses with hair cells 

(40). A study found that synaptic markers 

including synaptophysin and synaptotagmin 1 

were detected in the base of newly generated 

HCs induced by the ectopic expression of 

Atoh1, but  normal synaptic ribbons were not 

detected at the site of new HCs and neuron 

contacts (58). Previous research studies have 

shown that human embryonic stem cell has the 

potential to establish new synapses with hair 

cells in the auditory system (59, 60). 

Synaptogenesis was observed between the 

human neural progenitors and hair cells in 

cochlear explants (61). Studies have reported 

that in vitro neonatal cochlear explants can 

promote the ability of afferent fibers to re-

innervate and reform synaptic contacts in vivo 

(57, 60, 62).  

 

Conclusion 
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Despite recent advances in hair cell 

regeneration, more studies are required about 

reformation of ribbon synapses and 

reinnervation of regenerated HCs for restoring 

the hearing function. Although cochlear ribbon 

synapses fail to regenerate spontaneously when 

injured, recent studies have provided evidence 

for cochlear synaptogenesis that will be 

relevant to regenerative methods for cochlear 

neural loss. A better understanding of 

mechanisms underlying synaptic reformation 

would be helpful in achieving reversal of 

sensorineural hearing loss. 
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