• Logo
  • SBMUJournals

Genetic Polymorphism of Mismatch Repair Genes and Susceptibility to Prostate Cancer

Paniz Khooshemehri, Seyed Hamid Jamaldini, Seyed Amir Mohsen Ziaee, Mahdi Afshari, Mahshid Sattari, Behzad Narouie, Mehdi Sotoudeh, Vahideh Montazeri, Negar Sarhangi, Mandana Hasanzad



Purpose: Mismatch repair (MMR) is one of the DNA repair systems that correct mispaired bases during DNA replication errors. Polymorphisms in genes can increase susceptibility to the development of prostate cancer (PCa). In this study, we investigated mutL homolog 1 (MLH1) -93G>A (rs1800734) and mutS homolog 3 (MSH3) (rs26279) polymorphisms with the risk of PCa.

Materials and Methods: In this study of Iranian population, 175 histopathologically confirmed (PCa) patients and 230 benign prostate hyperplasia (BPH) as the controls were recruited. The genotypes of MLH1 and MSH3 were determined by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method.

Results: There was no significant difference of MLH1 (P = 0.4) and MSH3 (P?=?0.5) genotype distributions among PCa cases and controls. And also patients with PCa were not significant differences compared to those without in stage of cancer, grade of tumor, perineural invasion, and vascular invasion.

Conclusion: Our results did not show adequate evidence for any significant association of MLH1 and MSH3 polymorphisms and PCa .


prostate cancer; MSH3; MLH1; polymorphism; PCR-RFLP


Jemal A., Bray F., Center M. M., Ferlay J., Ward E., Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.

Bostwick D. G., Burke H. B., Djakiew D., Euling S., Ho S. m., Landolph J., et al. Human prostate cancer risk factors. Cancer 2004; 101: 2371-490.

Salinas C. A., Koopmeiners J. S., Kwon E. M., FitzGerald L., Lin D. W., Ostrander E. A., et al. Clinical utility of five genetic variants for predicting prostate cancer risk and mortality. prostate 2009; 69: 363-72.

Park J. Y., Huang Y., Sellers T. A. 2009 Single nucleotide polymorphisms in DNA repair genes and prostate cancer risk. Methods Mol Biol 2009; 471: 361-85.

Li G-M. Mechanisms and functions of DNA mismatch repair. Cell Res 2008; 18: 85-98.

Iyer R.R., Pluciennik A., Burdett V., Modrich P.L. DNA mismatch repair: functions and mechanisms. Chem Rev 2006; 106: 302-23.

Kinzler K. W., Vogelstein B. Gatekeepers and caretakers. Nature 1997; 386: 761-763.

Peltomäki P., Vasen H. Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 2004; 20: 269-76.

Han H. J., Maruyama M., Baba S., Park J-G., Nakamura Y. Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet 1995; 4: 237-42.

Jha R., Gaur P., Sharma S. C., Das S. N. Single nucleotide polymorphism in hMLH1 promoter and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Gene 2013; 526: 223-7.

Raptis S., Mrkonjic M., Green R. C., Pethe V. V., Monga N., Chan Y. M., et al. MLH1–93G> A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst 2007; 99: 463-74.

Shih C. M., Chen C. Y., Lee L., Kao W. T., Wang Y-C. A polymorphism in the hMLH1 gene (-93G→ A) associated with lung cancer susceptibility and prognosis. Int J Mol Med 2010; 25: 165-170.

Risinger J. I., Umar A., Boyd J., Berchuck A., Kunkel T. A., Barrett J. C. Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nat Genet 1996; 14: 102-5.

Berndt S. I., Platz E. A., Fallin M. D., Thuita L. W., Hoffman S. C., Helzlsouer K. J. Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer 2007; 120: 1548-54.

Hirata H., Hinoda Y., Kawamoto K., Kikuno N., Suehiro Y., Okayama N., et al. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer. J Urol 2008; 179: 2020-4.

Kawakami T., Shiina H., Igawa M., Deguchi M., Nakajima K., Ogishima T., et al. Inactivation of the hMSH3 mismatch repair gene in bladder cancer. Biochem Biophys Res Commun 2004; 325: 934-42.

Smith T. R., Levine E. A., Freimanis R. I., Akman S. A., Allen G. O., Hoang K. N., et al. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis 2008; 29: 2132-8.

Song H., Ramus S. J., Quaye L., DiCioccio R. A., Tyrer J., Lomas E., et al. Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis 2006; 27: 2235-42.

Xiao X., Melton D. W., Gourley C. Mismatch repair deficiency in ovarian cancer—molecular characteristics and clinical implications. Gynecol Oncol 2014; 132: 506-12.

Muniz-Mendoza R., Ayala-Madrigal M., Partida-Perez M., Peregrina-Sandoval J., Leal-Ugarte E., Macias-Gomez N., et al. MLH1 and XRCC1 polymorphisms in Mexican patients with colorectal cancer. Genet Mol Res 2012; 11: 2315-20.

Chen Y. C., Hunter D.J. Molecular epidemiology of cancer. CA Cancer J Clin 2005; 55: 45-54.

Xu J-L., Yin Z-Q., Huang M-D., Wang X-F., Gao W., Liu L-X., et al. MLH1 polymorphisms and cancer risk: a meta-analysis based on 33 case-control studies. Asian Pac J Cancer Prev 2012; 13: 901-7.

Wang T., Liu Y., Sima L., Shi L., Wang Z., Ni C., et al. 2012 Association between MLH1-93G> a polymorphism and risk of colorectal cancer. PloS one 2012; 7: e50449.

DOI: http://dx.doi.org/10.22037/uj.v0i0.5051


  • There are currently no refbacks.