• Logo
  • SBMUJournals

The Association of miR-let 7b and miR-548 with PTEN in Prostate Cancer

Mojtaba Saffari, Sayyed Mohammad Hossein Ghaderian, Mir Davood Omrani, Mandana Afsharpad, Kimia Shankaie, Niusha Samadaian



Purpose: This study aims to investigate the expression level of mir-let7b-3p and mir-548, which are involved in PTEN expression in tissue samples of prostate cancer patients versus benign prostate hyperplasia (BPH) and normal adjacent tissue.

Materials and Methods: Prostate cancer tissues were obtained from patients after receiving informed consent. Total RNA extraction and cDNA synthesis were performed for determining gene expression.

Results: Ten patients were determined to have high Gleason scores (> 7), 36 and seven samples had intermediate Gleason scores (7?) and BPH, respectively, and 40 samples were derived from normal adjacent tissue. Downreg­ulation of mir-let7b and upregulation of mir-548 expression significantly correlated with high-risk Gleason scores.

Conclusion: The present study showed that miR-let7b and/or mir-548 can be considered as potential targets in prostate cancer therapy.


Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, et al. Prostate cancer. Semin 70 www.thelancet.com [Internet]. 2016;387. Available from: https://www-clinicalkey-com.m-hryc.a17.csinet.es/service/content/pdf/watermarked/1-s2.0-S0140673614619474.pdf?locale=es_ES

Alegría-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics [Internet]. 2011;3(3):267–77. Available from: http://www.futuremedicine.com/doi/10.2217/epi.11.22

Wu Y, Sarkissyan M, Vadgama J V. Epigenetics in breast and prostate cancer. Methods Mol Biol [Internet]. 2015;1238:425–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25421674

Koochekpour S. Genetic and Epigenetic Changes in Human Prostate Cancer. Iran Red Crescent Med J ©Iranian Red Crescent Med J. 2011;13(2):80–98.

Nip H, Dar AA, Saini S, Colden M, Varahram S, Chowdhary H, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget [Internet]. 2016;7(42):68371–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27634912%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5356562%0Ahttp://www.oncotarget.com/fulltext/12031

Kim WT, Kim W-J. MicroRNAs in prostate cancer. Prostate Int [Internet]. 2013;1(1):3–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2287888215300088

Adhyam M, Gupta AK. A Review on the Clinical Utility of PSA in Cancer Prostate. Vol. 3, Indian Journal of Surgical Oncology. 2012. p. 120–9.

Pelzer AE, Volgger H, Bektic J, Berger AP, Rehder P, Bartsch G, et al. The effect of percentage free prostate-specific antigen (PSA) level on the prostate cancer detection rate in a screening population with low PSA levels. BJU Int. 2005;96(7):995–8.

He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Vol. 5, Nature Reviews Genetics. 2004. p. 522–31.

Orang AV, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Vol. 2014, International Journal of Genomics. 2014.

Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TLJ, et al. miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer. 2010;127(6):1363–72.

Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R. MiR-Q: A novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol. 2008;9.

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.

Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther [Internet]. 2016;1:15004. Available from: http://www.nature.com/articles/sigtrans20154

Catto JWF, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: A systematic review. Vol. 59, European Urology. 2011. p. 671–81.

Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Vol. 18, Current Opinion in Oncology. 2006. p. 77–82.

Samuels Y, Waldman T. Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol. 2010;347(1):21–41.

Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, Garcia-Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci [Internet]. 2009;106(1):268–73. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0810956106

Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. Vol. 141, Journal of Cancer Research and Clinical Oncology. 2015. p. 671–89.

Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 2003;1(3).

Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A Functional Genetic Approach Identifies the PI3K Pathway as a Major Determinant of Trastuzumab Resistance in Breast Cancer. Cancer Cell. 2007;12(4):395–402.

Guo ST, Chi MN, Yang RH, Guo XY, Zan LK, Wang CY, et al. INPP4B is an oncogenic regulator in human colon cancer. Oncogene. 2016;35(23):3049–61.

Gasser JA, Inuzuka H, Lau AW, Wei W, Beroukhim R, Toker A. SGK3 Mediates INPP4B-Dependent PI3K Signaling in Breast Cancer. Mol Cell. 2014;56(4):595–607.

Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121(6):837–48.

Woolley JF, Dzneladze I, Salmena L. Phosphoinositide signaling in cancer: INPP4B Akt(s) out. Vol. 21, Trends in Molecular Medicine. 2015. p. 530–2.

Chen H, Li H, Chen Q. INPP4B overexpression suppresses migration, invasion and angiogenesis of human prostate cancer cells. Clin Exp Pharmacol Physiol [Internet]. 2017;44(6):700–8. Available from: http://doi.wiley.com/10.1111/1440-1681.12745%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/28261855

Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, Xue H, et al. INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal. 2014;12(1).

Newton AC, Trotman LC. Turning Off AKT: PHLPP as a Drug Target. Annu Rev Pharmacol Toxicol [Internet]. 2014;54(1):537–58. Available from: http://www.annualreviews.org/doi/10.1146/annurev-pharmtox-011112-140338

Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD, Cote G, et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene. 2012;31(10):1264–74.

Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A, et al. Identification of PHLPP1 as a Tumor Suppressor Reveals the Role of Feedback Activation in PTEN-Mutant Prostate Cancer Progression. Cancer Cell. 2011;20(2):173–86.

DOI: http://dx.doi.org/10.22037/uj.v0i0.4564


  • There are currently no refbacks.